英语人>网络例句>代数几何 相关的搜索结果
网络例句

代数几何

与 代数几何 相关的网络例句 [注:此内容来源于网络,仅供参考]

Linear Algebra is mainly a subject which studies the linear structure of finite dimensional linear space and its linear transformation while linear concept is in itself from the old Euclid Geometry. The concept of "Linear Space" is a kind of algebraic abstract. In many fields of modern engineering project and technology, because of the influence of computer and graph showing, the algebraic disposal of geometric questions, the visual disposal of algebraic questions, algebra and geometry are tightly combined.

线性代数主要是研究有限维线性空间及其线性变换这一代数结构的学科,而线性概念究其根源则是来自古老的Euclid几何,线性空间概念是几何空间的一种代数抽象,在现代工程技术的许多领域里,由于计算机及图形显示的强大威力,几何问题的代数化处理,代数问题的可视化处理,把代数与几何更加紧密地结合在一起。

This paper first summarizes recent researches on this topic, and then proposes some methods for curve modeling with cubic algebraic curve based on pure geometric constraints that involve control points, tangent directions and curvatures.

然后提出了一种基于几何约束的三次代数曲线的插值方法,该方法完全通过几何量如控制顶点、切线和曲率来控制三次代数曲线的形状,使得对三次代数曲线的编辑与对三次 B-样条曲线的编辑一样灵活方便。

Content: This course discusses the line, plane and quadratic surface in space through algebraic methods, and aims at developing the students' ability to solve geometric problems through analytic methods and to relate geometric intuitive image with algebraic quantitative relation.

主要内容:本课程运用代数方法研究空间解析几何中的直线、平面与二次曲面,培养学生运用解析方法解决几何问题的能力,以及将几何直观形象与代数数量关系相联系的能力。

Libermann.The early researcheson this kind of manifolds were closely related to Physics and Mechanics.But since1991,S.Kaneyuki published his result on the algebraic condition for the existence ofinvariant〓structures on a coset space,Lie theory has played the most impor-tant role in the study of this kind of manifolds.In particular,dipolarizations in a Liealgebra are closely related to the homogeneous〓manifolds.Dipolarizationsin semisimple Lie algebras and the homogeneous〓manifolds associated withthese dipolarizations have been studied by S.Kaneyuki,Z.X.Hou and S.Q.Deng.Inthe partⅡ of this thesis we study the dipolarizations in some quadratic Lie algebrasand the homogeneous parakahler manifolds associated with these dipolarizations.

Libermann给出的,早期的有关类流形的研究与物理和力学密切相关,自从1991年金行壮二发表了陪集空间上存在不变仿凯勒结构的代数化结果后,李群及李代数理论在这类流形的研究中起着主要作用,特别地,李代数的双极化与这类流形密切相关,半单李代数的双极化的相关几何,金行壮二,候自新和邓少强等人已作了研究,二次李代数是比半单李代数更广且带有非退化不变双线性型的李代数,本文主要研究了二次代数的双极化及相关几何。

The latter is essentially derived from the geometric realization of Happels triangulated equivalence between stable module category of repetitive algebra and bounded derived category of finite dimensional algebra. In terms of this realization, we deduce that the Lie algebra realized by derived category of a finite dimensional algebra is isomorphic to the Lie algebra realized by stable module category of the corresponding repetitive algebra.

后者本质上是Happel关于重复代数的稳定模范畴和导出范畴的三角等价的一个几何实现及其应用,使用这种几何实现,我们可以证明在重复代数的稳定模范畴上定义的李代数同构于相应的导出范畴上实现的李代数。

Content of the course consists of:(1)Basic Theories of Polynomials ;(2)Linear Algebra: topics on basic matrix theory, determinant, system of linear equations, vector space, linear transformation, eigenvalue problems, inner product and Euclidean space , and quadratic form etc.;(3) Analytic Geometry: topics on algebraic operations of vectors, coordinates, lines and planes, curves and curved surfaces, etc.

学习本课程后,学生应学会用线性空间与线性变换的观点处理包括线性代数方程组在内的有关理论与实际问题;学会熟练地运用矩阵工具;本课程还学习基本的多项式知识和空间解析几何的基本知识。课程内容包括几个主要部分:(1)多项式代数;(2)线性代数:矩阵,行列式,线性代数方程组,向量空间与线性变换理论,特征值问题,欧氏空间理论,二次型等;(3)解析几何:几何空间向量代数,通过建立坐标系以及借助向量方法研究空间平面与直线及点﹑线﹑面的相互关系,借助曲面方程研究空间曲面,尤其是柱面,锥面,旋转面和二次曲面以及曲面的交线等。

The questions covering pre-algebra and elementary algebra make up the Pre-Algebra/Elementary Algebra Sub score. The questions covering intermediate algebra and coordinate geometry make up the Intermediate Algebra/Coordinate Geometry sub score. The questions covering plane geometry and trigonometry make up the Plane Geometry/Trigonometry sub score.

包含有基础初等代数和初等代数的考题构成了基础初等代数/初等代数的技能分数,涉及到中等代数和坐标几何的考题构成了中等代数/坐标几何的技能分数,而涵盖平面几何和三角函数的考题则构成了平面几何/三角函数的技能分数。

Its main goal is to explore information in the K-theory groups of the index C*-algebras, the Roe algebras C*, by using the large-scale geometrical structure of proper metric spaces, including noncompact complete Riemannian manifolds, finitely generated groups, etc., so as to establish connections among geometry, topology and analysis of the geometric spaces, and furthermore, to solve other relating problems, say, the Novikov conjecture, the Gromov-Lawson-Rosenberg conjecture on positive scalar curvature, the idempotent problem in the theory of C*-algebras.

粗几何上的指标理论是"非交换几何"领域九十年代以来发展起来的重要研究方向,它孕育于非紧流形上的指标理论,其主要目标是通过几何空间(如非紧完备黎曼流形、有限生成群等)的大尺度几何结构探索指标代数,即 Roe代数,的K-理论群的信息,从而建立几何空间的几何、拓扑与分析之间的联系,并应用于解决其他重要问题,如Novikov猜测、Gromov-Lawson-Rosenberg正标量曲率猜测、群C*-代数幂等元问题等。

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

Finally,through some ideas from Algebraic Geometry,we constructed strongly exceptional collections of derived sheaf categories,and solved the problem that equivalences between some posets.

最后,通过代数几何里的一些思想,我们构造了导出层范畴的强例外集合,解决了一类偏序集的等价问题。

第5/16页 首页 < 1 2 3 4 5 6 7 8 9 ... > 尾页
推荐网络例句

This one mode pays close attention to network credence foundation of the businessman very much.

这一模式非常关注商人的网络信用基础。

Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.

扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。

There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.

双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。