代数几何
- 与 代数几何 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Moreover, multivariate splines are closely related with some topics in pure mathematics, such as, abstract algebraic, algebraic geometry and combinatorics.
另一方面,多元样条与基础数学的一些领域,如:抽象代数、代数几何、微分方程及组合数学等,亦有着密切关联。
-
The main objects of study are algebraic varieties in an affine or projective space over an algebraically closed field; these are introduced in Chapter I, to establish a number of basic concepts and examples.
全书共分七章,前三章是基础知识部分;后四章是本书的核心部分,总结了近年来代数几何码的最新研究成果,并且包含了作者的一些尚未发表的结果。
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
-
This is a genuine introduction to algebraic geometry.
这是一个真正介绍代数几何。
-
The construction and decoding of algebraic geometry codes are one of the hotspots in modern encoding theory.
中文摘要:代数几何码的构造与译码问题是当前编码领域研究的热点课题之一。
-
Presents the methods of classical algebraic geometry.
介绍了经典的代数几何方法。
-
This paper discussed some unsolved problems of traditional multivariate polynomial interpolation problems with constructive algebraic geometry methods.
本文利用构造性代数几何方法研究传统多元多项式插值问题中的一些遗留问题。
-
At the same time,since the algebraic geometry theory and method during the past few years have unceasingly developed and improved,we have forceful theory basis and new method to further research the problem of multivariate interpolation.
同时,由于近年来代数几何理论与方法的不断发展和完善,又为多元插值问题的进一步研究提供了强有力的理论依据和全新的研究方法。
-
The Todd polynomials were first studied in algebraic geometry and it is surprising that they play this fundamental role in classification of manifolds .
托德 多项式第一次被学习在代数几何并且它惊奇他们充当在多头管的分类的这个根本角色。
-
Within algebraic geometry is the description of geometric objects as solution sets of polynomial equations, combining the concepts of quantity and space, and also the study of topological groups , which combine structure and space.
在代数几何里,把几何对象描述成多项式方程的解集,结合数量和空间的概念;也研究拓扑群,结合了结构和空间。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。