代数几何
- 与 代数几何 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In the four section, from the interpolationdimension of an algebraic curve and an algebraic surface,using theoryand method of algebraic geometry, we get some interpolation of analgebraic curve and an algebraic surface, and we prove the reasonableof the interpolation dimension of an algebraic curve and an algebraicsurface.
第四章我们从沿代数曲线曲面空间的插值维数出发,利用代数几何理论与方法,给出了代数曲线曲面上的基本插值结构,并证明了我们长期应用的其上的插值维数公式的合理性。
-
The paper applies algebraic geometry, computational geometry, approximation theory to study the following problems: the Nother type theory and the Riemann-Roch type theory of the piecewise algebraic curve; the number of real intersection points of piecewise algebraic curves; the real piecewise algebraic variety and the B-net resultant of polynomials.
本文应用代数几何,计算几何,函数逼近论等学科的基本理论,分别就分片代数曲线的Nother型与Riemann-Roch型定理;分片代数曲线的实交点数;实分片代数簇以及多项式的B-网结式进行研究。
-
In this paper, we summarize the foundations of Algebraic function fields, algebraic curves over finite fields and algebraic geometry codes, then we focus on the dimensions of codes on the quotient of the hermitian curves, by using the theory of weierstrass semigroup and the idea of Ho...
我们在系统地总结了代数函数域,有限域上的代数曲线和代数几何码的基本知识的基础上,利用Weierstrass子半群理论,使用Homma和Kim的方法,讨论了Hermite曲线商域上码的维数问题,得到的主要结果如下: 1。
-
As an important algebraic subject, rings are the base on Algebraic Geometry and Algebraic Number Theory.
环作为一门重要的代数学科是代数几何和代数数论的基础,有许多其它相关学科领域都涉及到环。
-
Computing integral closure of a finite extension is not only an important problem in commutative algebra, but also in algebraic geometry and algebraic number theory.
计算有限扩张的整闭包不但是交换代数中的一个核心问题,也很受代数几何以及代数数论发展的推动。
-
Algebraic K-theory is an important branch of algebra which has deep relationships with other branches of mathematics such as algebraic number theory, algebraic geometry and algebraic topology.
代数K-理论是代数学的一个重要分支,它与数学中代数数论,代数几何和代数拓扑等其它分支有深刻的联系。
-
The vector has the rich actual background and the widespread application function, it has the algebra and the geometry dual statuses, causes the algebra geometrization, the geometry algebra, has communicated the algebra, the geometry and the trigonometric function, has the good analysis method and the complete structure.
向量具有丰富的实际背景和广泛的应用功能,它具有代数和几何双重身份,使代数几何化、几何代数化,沟通了代数、几何与三角函数,具有良好的分析方法和完整的结构。
-
The multivariate polynomial interpolation problem is a classical mathematical problem that is widely used in many fields, such as multivariate function list, surface design and finite element method. In recent years, multivariate polynomial interpolation has been focused by many people, of which the geometric topological struction of sets of interpolation nodes is also much concerned by us.
多元多项式插值问题是一个十分具有研究意义和实际应用价值的数学问题,它广泛应用于多元函数列表,以及曲面的外形设计和有限元法等诸多领域,近年来多元多项式插值越来越受到人们的广泛关注,其中有关插值结点组的几何拓扑结构问题也是人们十分关注的内容。1998年,梁学章和吕春梅在文献[2]中借助代数几何中的有关理论,进一步讨论了沿无重复分量平面代数曲线上的Lagrange插值问题,并应用Cayley ?
-
By utilizing the concepts and methods developed in Algebra Topology,Algebra Geometry and Algebra Representations,we first depicted the concepts and results of Incidence Algebra which reflects the linear structure of underlying posets and Sheaf theory which reflects the topological structure of underlying poset in the framework of Category Theory.
本文综合运用了代数拓扑、代数几何及代数表示论里发展起来的概念与方法,首先在范畴的框架下,对和偏序集的线性结构密切相关的Incidence代数,及与偏序集的拓扑结构紧密联系的层,进行了刻画。
-
Besides having a some insight into theinternal structure of operator algebras,it gives a greatimpetus to the development of modern mathematics towords thenon-commutative direction,especially to the developement ofnon-commutative geometry,non-commutative algebraical topologyas well as non-commutative algebraical geometry.
除了反映算子代数自身的内在性质之外,它还对于现代数学朝着非交换的方向发展起着积极的推动作用,特别对于&非交换微分几何&,&非交换的代数拓朴&,甚至&非交换的代数几何&等非交换的数学学科的发展具有重要的影响。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。