英语人>网络例句>不等式 相关的搜索结果
网络例句

不等式

与 不等式 相关的网络例句 [注:此内容来源于网络,仅供参考]

Chapter 4 discusses the stability of a class of nonlinear impulsive partial differential equations. The main idea is translating the stability of the considered nonlinear impulsive partial differential equation into that of the corresponding linear impulsive ordinary differential equation via Gronwall-Bellman inequality with impulse on the basis of comparison theorem.

第四章基于比较定理,主要利用含脉冲的Gronwall-Bellman不等式初步讨论了脉冲偏微分系统的稳定性,将一类非线性脉冲偏微分方程的稳定性化归为线性脉冲常微分方程的稳定性,为将脉冲常微分方程稳定性的有关结论推广到脉冲偏微分方程提供了理论依据并奠定了基础。

All the results are expressed in terms of linear programming and linearmatrix inequality.

所有的结果均以线性规划和线性矩阵不等式来表达。

Harmonic function generalizes the harmonic function, the following respects are discussed: the least energy, Liouville theorem with respect to harmonic function and the relation of harmonic function and subharmonic function.

如对次调和函数的平均值不等式的推导[3- 4 ] ,调和函数的存在性的证明等[5] 。2 0 0 0年,PeterLi提出了另外一种函数,即调和函数,这一类函数比调和函数的应用广泛得多,同时又具有和调和函数类似的性质。

In this paper continuous differentiable conditions of output response functions of bidirectional associate memory neural networks are reduced to Lipschitz condition.

因此,本文将双向联想记忆神经网络的输出响应函数连续可微的假设削弱为满足Lipschitz条件,通过引入Lyapunov函数,利用不等式的方法,证明了双向联想记忆神经网络全局指数稳定性的一个定理。

The relationship between the class of continuous functions satisfying Lipschitz condition and the class of polar-functions of generalized Brownian Sheet is obtained.

讨论了N指标d维广义Brownian Sheet极函数的特征,得到了满足Lipschitz条件的连续函数类与广义Brownian Sheet的极函数类之间的关系,给出了广义BrownianSheet不动点的Hausdorff维数和Kolmogorov下熵指数的一个不等式

Under the Lipschitz conditions,using Morrey space and Campanatospace methods and filling-hole technique to clear off the difficulty,whicharoused by that monotonic inequalities are no longer true and blow-uptechnique are very difficult to be used again,we obtain that the weaksolutions or the very weak solutions to systems(3)are locally Holdercontinuous.

对方程组(3),我们增加了Lipschitz条件,利用Morrey空间法和Campanato空间法和补洞技巧等来克服非齐次项带来的,单调不等式不再成立和Blow-up技巧难于适用的困难,得出了方程组(3)在一定的条件下的很弱解和弱解是局部〓连续的。

By employing the local Lipschitz condition and Picard sequence, the local existence-uniqueness of solutions of stochastic functional differential equations of Ito-type is firstly obtained. Furthermore, a continuation theorem for stochastic functional differential equations of Ito-type is given by using stochastic analysis technique and the quasi-boundedness condition. Finally, by establishing some delay differential inequalities and using properties of H_m-functions, a stochastic version of Wintner theorem and the global existence-uniqueness of solutions of stochastic functional differential equations of Ito-type are given. The results generalize the earlier publications.

首先,利用局部Lipschitz条件和Picard序列,获得了伊藤随机泛函微分方程解的局部存在唯一性;其次,利用随机分析技巧和拟有界条件,建立了伊藤随机泛函微分方程解的延拓定理;最后,通过建立一些时滞微分不等式和利用H_m-函数的特性,得到了Wintner定理的随机版本和伊藤随机泛函微分方程解的全局存在唯一性,推广了已有的一些结果。

We obtain definitions for local maximum value and local minimum value if in (1) and (2) we require only that the inequalities hold on , where N is some neighborhood of .

在 (1)和(2)中,如果不等式只需要在上成立,其中 N是的某个邻域,我们就得到极大值和极小值的定义。

This paper studies a completely generalized nonlinear quasi-variation-like inclusions problem in the setting of locally convex topological vector space s and proves the existence its solutions.

似变分不等式和广义拟似变分包含问题是研究非凸最优化问题、非凸和不可微最优化问题的重要工具。在局部凸的拓扑向量空间中研究了完全广义非线性拟似变分包含问题,并证明了其解的存在性

We discussed the compact speudo-umbilical submanifolds in a locally symmetric conformally flat Riemannian manifold.

2中的积分不等式推广到局部对称共形平坦黎曼流形中的伪脐子流形。

第51/81页 首页 < ... 47 48 49 50 51 52 53 54 55 ... > 尾页
推荐网络例句

Breath, muscle contraction of the buttocks; arch body, as far as possible to hold his head, right leg straight towards the ceiling (peg-leg knee in order to avoid muscle tension).

呼气,收缩臀部肌肉;拱起身体,尽量抬起头来,右腿伸直朝向天花板(膝微屈,以避免肌肉紧张)。

The cost of moving grain food products was unchanged from May, but year over year are up 8%.

粮食产品的运输费用与5月份相比没有变化,但却比去年同期高8%。

However, to get a true quote, you will need to provide detailed personal and financial information.

然而,要让一个真正的引用,你需要提供详细的个人和财务信息。