英语人>网络例句>不等式 相关的搜索结果
网络例句

不等式

与 不等式 相关的网络例句 [注:此内容来源于网络,仅供参考]

And then, in this part, following the idea of Topping [51, 52], we will show an isoperimetric inequality (6.3.1) on surfaces of non-positive Gaussian curvature by means of the curve shortening flow on surfaces, this inequality can be considered as a generalization of the Banchoff-Pohl inequality in the Euclidean plane.

然后,仿照Topping[51]和[52]利用平均曲率流证明等周不等式的想法,我们利用曲面上的曲线缩短流在Gauss曲率非正的曲面上证明了一个等周不等式(6.3.1),它可以看成欧氏平面上Banchoff-Pohl [8]不等式在曲面上的推广。

Under some moderate conditions, the prior estimate of the solutions of the system is obtained. Making use of constructing Picard iterative sequence, Doob martingale inequality, Gronwall inequality, Borel-Cantelli lemma and some fundamental inequalities, together with the uniform Lipschitz conditions, the existence and uniqueness of the solution for stochastic functional differential equations with infinite delay is derived on the interval t0,∞.

在适当的条件下,得到了随机泛函微分方程的解的先验估计;再结合一致Lipschitz条件,通过构造Picard迭代序列,利用Doob较不等式、Gronwall不等式、Borel-Cantelli引理及一些基本不等式,得到该方程的解在区间[t0,∞]上是存在且唯一的。

The problem of geometric inequalities for Ceva simplex by analytic method and geometric theory is studied.

利用解析方法和几何不等式理论,研究了Ceva 单形的几何不等式问题,建立了单形和它的Ceva 单形外接球半径与内切球半径两个不等式

In this paper,the anthor study problem of geometric inequalities for Ceva simplex by analytic method and geometric theory.

利用解析方法和几何不等式理论,研究了Ceva 单形的几何不等式问题,建立了单形和它的Ceva 单形外接球半径与内切球半径的两个不等式

Using analytic method and theory of geometric inequality,we study the problem of geometric inequalities concerning n-dimensional simplex and its interior point in.

应用解析方法和几何不等式理论研究了n维欧氏空间En中n维单形Ωn的外接球半径及Ωn中内点之间的几何不等式问题,建立了涉及单形Ωn的外接球半径以及Ωn中内点到各侧面距离之间的几何不等式,作为其应用,进一步改进了著名的M.S。

Recent studies on the geometric inequality for the n-dimensional simplex produce many important geometric inequalities;however,the study on the problem of the geometric inequality for the pedal simplex has been very few.

关于n维单形的几何不等式研究,近期建立了许多重要几何不等式,然而,关于垂足单形几何不等式研究还是比较少。

Hilbet-type inequality is important in analysis and its applications. In recent years, by improving the way of weight coefficient, some research on the extensions and applications of this type of inequalities are developed. In this paper, we give a Hilbert infinite series inequality with the best constant factor whose kernel is a negative quadratic form by applying the method of weight coefficients. And an equivalent form is considered.

Hilbert型不等式在分析中有重要作用,近年来,由于改进权系数的方法,发展了这类不等式,并进一步推广应用和研究,应用权系数方法给出的一个带有最佳常数的核为负二次型齐次的Hibert型无穷级数不等式,同时考虑了它的等价形式。

By introducing a weight function, a best extension of Hilbert integral inequlity and the reverse form are given. The constant factor of the two inequalities is proved to be the best.

引入单参数及估算权函数,给出一个核为-λ齐次的新的Hilbert型积分不等式及与之对应的逆向积分不等式,并证明这两个不等式的常数因子是最佳的。

A novel method for design of controller enforcing the constraints is presented. First the constraints involving the marking and Parikh vectors are transformed into the constraints involving Parikh vector only using Petri net state equality, and then the controller is constructed based on the viewpoint that a place can be seen as a linear inequality constraint on the Parikh vector.

该方法首先利用Petri网的状态方程把关于标识向量和Parikh向量的不等式约束转变成关于Parikh向量的不等式约束,然后基于Petri网库所是关于Parikh向量的不等式约束的观点构造控制器。

By redefining multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, it is no longer necessary to convert inequality constraints into equality constraints by slack variables in order to reuse the method dedicated to equality constraints for constructing Lagrange neural networks.

若重新定义与不等式约束相关的乘子为正定函数,则在构造Lagrange神经网络时,可直接使用处理等式约束的方法处理不等式约束,不需再用松驰变量将不等式约束转换为等式约束,减小了网络实现的复杂程度。

第5/81页 首页 < 1 2 3 4 5 6 7 8 9 ... > 尾页
推荐网络例句

Breath, muscle contraction of the buttocks; arch body, as far as possible to hold his head, right leg straight towards the ceiling (peg-leg knee in order to avoid muscle tension).

呼气,收缩臀部肌肉;拱起身体,尽量抬起头来,右腿伸直朝向天花板(膝微屈,以避免肌肉紧张)。

The cost of moving grain food products was unchanged from May, but year over year are up 8%.

粮食产品的运输费用与5月份相比没有变化,但却比去年同期高8%。

However, to get a true quote, you will need to provide detailed personal and financial information.

然而,要让一个真正的引用,你需要提供详细的个人和财务信息。