不等式
- 与 不等式 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
This paper considers the estimate of the upper bound of second eigenvalue for the differential operator with any order.
考虑了任意阶微分算子第二特征值的上界估计,获得了用第一特征值来估计第二特征值的上界的不等式,其估计系数与区间的度量无关。
-
In the case of Dirichlet boundary conditions,these estimates were improved by Baker[1]who used a technique that can be interpreted as a nonstandard energy argument.
Dupont[15]使用标准能量方法给出了一类线性双曲方程Galerkin解的L2误差估计,对于Dirichlet型边值问题,Baker[1]对其结果作了改进,用的是一种可谓"非标准的能量不等式"方法。
-
The paper first obtains the L2 -apriori estimates for the solutions of two kinds of autocatalytic model s under Dirichlet boundary conditions, and then, using the properties of linear semigroup and delicate calculations, the estimates of the maximal norms are obtained, therefore, the global existence of the solutions is proved.
该文利用重要不等式及能量积分方法首先得到了解的初等的先验估计。然后利用线性半群的有关性质及精细计算得到了解的最大模估计,从而证明了两类三次自催化模型在Dirichlet边界条件下整体解的存在性,并进而证明了第一类模型的最大吸引子的存在性
-
This paper discusses the upper estimates of weighted eigenvalues for Dirichlet problem of membrane vibration.
考虑膜振动Dirichlet问题的带权特征值上界估计,利用试验函数、分部积分以及不等式估计等方法,建立了用前n个特征值来估计第n+1个特征值的上界估计,其估计系数与区域度量无关。
-
Further more, we get the necessary and sufficient conditions for the two-dimensional discrete system, where the permanence and extinction of the system are decided and only decided by the relationship of the non-delay coefficients in the system. Further, we for the first time find the equivalent permanence and extinction between the two-dimensional discrete Lotka-Volterra and its corresponding continuous system.
进一步,本得到了此类离散系统二维自治情形下,其持续生存和灭绝分别等价于系统非时滞系数构成的相应不等式;通过比较本文中二维自治Lotka-Volterra竞争系统的连续和离散两种情形的有关结论,首次发现这两类系统具有等价的持续生存和灭绝性质,建立了这两类系统之间的联系。
-
An optimization algorithm is proposed to obtain the estimate of the domain of attraction as large as possible.
利用线性矩阵不等式方法得到了闭环系统渐近稳定以及满足H〓性能的充分条件。
-
In chapter 4, a sufficient condition for stability of time-delay T-S fuzzy systems subject to actuator saturation is first provided, and the problem of estimating the domain of attraction is also formulated.
第四章针对输入受约束的时滞T-S模糊系统,在系统参数确定的情况下,给出系统渐近稳定的充分条件,系统的吸引域的估计问题被转化为一个线性矩阵不等式形式的约束优化问题。
-
Based on the stability condition, the robust stability of uncertain time-delay T-S fuzzy systems subject to actuator saturation is discussed, and the state feedback gain that maximizes the domain of attraction is designed.In chapter 5, a problem of determing stability domain of time-delay T-S fuzzy systems with input saturation is discussed.
在系统参数不确定的情况下,通过构造适当的Lyapunov-Krasovskii泛函,同样给出了该不确定系统的鲁棒稳定性条件,通过求解线性矩阵不等式形式的约束优化问题,可以得到使吸引域尽可能大的状态反馈增益。
-
Trigonometrical function most value solution mainly fromthe trigonometrical function domain of definition, the valueterritory, monotonous, the image and the triangle 恒等 distortionembarks, and the comprehensive utilization function, the inequality,the equation, several what kind multitudinous knowledge sides canobtain.
三角函数最值的求解主要从三角函数的定义域、值域、单调性、图象和三角恒等变形出发,并且综合利用函数、不等式、方程、几何等众多知识方能求得。
-
Chapter 6, consider a coupled generalized KdV-Burgers equation. In section 6.2, we study the initial-boundary value problem in the semi-unbounded domain, the existence of global solutions and global attractors is proved by means of a uniform priori estimate for time. In section 6.3, the Cauchy problem by using the weighted space, the existence of the global attractors for a coupled generalized KdV-Burgers in an semi-unbounded domain is proved.
第六章,考虑了一类广义耦合的KdV-Burgers方程,在第二节中讨论了半无界区域上的初边值问题,证明了整体光滑解和整体吸引子的存在性;在第三节中讨论了Cauchy问题,利用加权函数和加权空间上的插值8不等式,证明了半无界区域上整体吸引子的存在性。
- 推荐网络例句
-
Finally, according to market conditions and market products this article paper analyzes the trends in the development of camera technology, and designs a color night vision camera.
最后根据市场情况和市面上产品的情况分析了摄像机技术的发展趋势,并设计了一款彩色夜视摄像机。
-
Only person height weeds and the fierce looks stone idles were there.
只有半人深的荒草和龇牙咧嘴的神像。
-
This dramatic range, steeper than the Himalayas, is the upturned rim of the eastern edge of Tibet, a plateau that has risen to 5 km in response to the slow but un stoppable collision of India with Asia that began about 55 million years ago and which continues unabated today.
这一引人注目的地域范围,比喜马拉雅山更加陡峭,是处于西藏东部边缘的朝上翻的边框地带。响应启始于约5500万年前的、缓慢的但却不可阻挡的印度与亚洲地壳板块碰撞,高原已上升至五千米,这种碰撞持续至今,毫无衰退。