上微分
- 与 上微分 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
At that time, however, nonlinear differential equations had no universal solutions and some problems of celestial mechanics were still required to be resolved.
而非线性微分方程没有普遍解法以及一些天体力学问题的未决,促使庞加莱在微分方程求解过程中引入定性思想,创立了常微分方程实域定性理论这一新分支,突破了原有的微分方程求解的思维束缚,是微分方程研究历史上的一次重大飞跃。
-
Firstly,by using the estimating methodfor the compact embedding operators(from weighted Sobolev space to the weighted〓space),we obtain a necessary and sufficient condition for the discreteness of thespectrum of certain differential operators.Secondly,based on the property of thespectrum of difinitizable operators on the Krein space,we consider the left definitedifferential equations with middle deficiency indices,and give a completecharacterization for self-adjoint(J-self-adjoint)differential operators in theindefinite inner product space 〓.Especially,we prove that all the J-self-adjoint differential operators are definitizable.
我们首先运用加权Sobolev空间到加权〓空间嵌入算子紧性的判别方法,证明一类加权自伴微分算子具有离散谱的充要条件;然后,基于Krein空间上可定化算子谱的性质,对于具中间亏指数的左定型微分方程,建立其相应的微分算式在不定度规空间〓上所生成自伴算子的完备性刻画(特别证明了J-自伴微分算子具有可定化性)。
-
In order to obtain more general solution of second order linear differential equation with constant coefficients, which is important in theory and practice, on the basis of knowing a special of the second order linear differential equation with constant coefficients and by using the method of variation of constant, the second order linear differential equation with constant coefficients is transferred to the reduced differential equation and a general formula of the second order linear differential equation with constant coefficients is derived.
为了更多地得到理论上和应用上占有重要地位的二阶常系数线性非齐次微分方程的通解,这里使用常数变易法,在先求得二阶常系数线性齐次微分方程一个特解的情况下,将二阶常系数线性非齐次微分方程转化为可降阶的微分方程,从而给出了一种运算量较小的二阶常系数线性非齐次微分方程通解的一般公式,并且将通解公式进行了推广,实例证明该方法是可行的。
-
In chapter two, under non-Lipschitz condition, the existence and uniqueness of the solution of the second kind of BSDE is researched, based on it, the stability of the solution is proved; In chapter three, under non-Lipschitz condition, the comparison theorem of the solution of the second kind of BSDE is proved and using the monotone iterative technique , the existence of minimal and maximal solution is constructively proved; in chapter four, on the base of above results, we get some results of the second kind of BSDE which partly decouple with SDE, which include that the solution of the BSDE is continuous in the initial value of SDE and the application to optimal control and dynamic programming. At the end of this section, the character of the corresponding utility function has been discussed, e.g monotonicity, concavity and risk aversion; in chapter 5, for the first land of BSDE ,using the monotone iterative technique , the existence of minimal and maximal solution is proved and other characters and applications to utility function are studied.
首先,第二章在非Lipschitz条件下,研究了第二类方程的解的存在唯一性问题,在此基础上,又证明了解的稳定性;第三章在非Lipschitz条件下,证明了第二类BSDE解的比较定理,并在此基础上,利用单调迭代的方法,构造性证明了最大、最小解的存在性;第四章在以上的一些理论基础之上,得到了相应的与第二类倒向随机微分方程耦合的正倒向随机微分方程系统的一些结果,主要包括倒向随机微分方程的解关于正向随机微分方程的初值是具有连续性的,得到了最优控制和动态规划的一些结果,在这一章的最后还讨论了相应的效用函数的性质,如,效用函数的单调性、凹性以及风险规避性等;第五章,针对第一类倒向随机微分方程,运用单调迭代方法,证明了最大和最小解的存在性,并研究了解的其它性质及在效用函数上的应用。
-
As an application of continuous wavelet transform,we discuss the relationsbetween some differemtial equaltions and the integral equations by using thecontinuous wavelet transform in 〓,vector function space andabstract function space respectively;prove that they are equivalent not only in theweak topology but also in the strong topology.
作为连续小波变换的应用,分别利用〓上的,多元函数空间上的,向量函数空间上的和抽象函数空间上的连续小波变换分别得到了某些线性微分方程,某些线性偏微分方程,某些向量线性微分方程和某些抽象函数的微分方程分别等价于其相应的积分方程,证明了它们不仅在弱收敛意义下而且在范数收敛意义下是等价的。
-
Optimization; parametric quadratic convex programming; set-valued map; directional derivative; linear stability; solution-set map; parametric linear programming; error bound; subdifferential map; lower locally directionally Lipschitzian; upper locally di-rectionally Lipschitzian; locally directionally Lipschitzian; convex function; quasidiferential; kernelled quasidiferential; quasi-kernel; star-kernel; star-diferential; Penot diferential; subderivative; superderivative; epiderivative; set-valued optimization; set-valued analysis; subdifferential; optimization condition;ε-dual; scalization; generalized subconvexlike-cone;ε-Lagrange multiplier
基础科学,数学,运筹学最优化;集值映射;方向导数;线性稳定;最优解集映射;参数线性规划;参数凸二次规划;误差界;次微分映射;下局部方向Lipschitzian;上局部方向Lipschitzian;局部方向Lipschitzian;凸函数;拟微分;核拟微分;拟核;星核;星微分; Penot-微分;上导数;下导数; Epi-导数;集值优化;集值分析;集值映射的次微分;最优性条件;广义锥次类凸;ε-对偶;数乘;ε-Lagrange乘子
-
Finally, combining PDE with Differential Geometry, parametrically representing the surface, tensor based image processing techniques have been proposed, such as edge detection , morphological operation? implicitly representing the surface as the level-set of the higher dimensional function, the variational problems and partial differential equations that define maps onto the given generic surface have been discussed.
本文结合微分几何学,基于曲线坐标系下的微分算子将平面上的图像处理框架推广到曲面上,得到了参数化曲面上的图像处理框架,并给出了边缘检测和形态学运算的算例;在已知给定曲面的隐式表达时,探讨了定义在任意曲面上的偏微分方程,解决了任意曲面上数据场的扩散问题。
-
In this paper, we discuss the basic concepts and the advance in the theory of differential equations on measure chains, including the work of the author's research group.
综述测度链上微分方程理论的基本概念及其最新进展,包括作者的研究集体所做的工作,也提出一些值得进一步研究的课题。
-
In this project, we study the theory of higher order differential equations in Banach spaces and related topics. We solve an open problem put forward by two American Mathematicians and two Italian Mathematicians concerning wave equations with generalized Weztzell boundary conditions, introduce an existence family of operators from a Banach space $Y$ to $X$ for the Cauchy problem for higher order differential equations in a Banach space $X$, establish a sufficient and necessary condition ensuring $ACP_n$ possesses an exponentially bounded existence family, as well as some basic results in a quite general setting about the existence and continuous dependence on initial data of the solutions of $ACP_n$ and $IACP_n$. We set up quite a few multiplicative and additive perturbation theorems for existence families governing a wide class of higher order differential equations, regularized cosine operator families, regularized semigroups, and solution operators of Volterra integral equations, obtain classical and strict solutions having optimal regularity for the inhomogeneous nonautonomous heat equations with generalized Wentzell boundary conditions, gain novel existence and uniqueness theorems,which extend essentially the existing results, for mild and classical solutions of nonlocal Cauchy problems for semilinear evolution equations, present a new theorem with regard to the boundary feedback stabilization of a hybrid system composed of a viscoelastic thin plate with one part of its edge clamped and the rest-free part attached to a visocelastic rigid body. Also we obtain many other research results.
在本研究中,我们对Banach空间中的高阶算子微分方程的理论以及相关理论进行了深入研究,解决了由美国和意大利的四位数学家联合提出的一个关于广义Wentzell边界条件下的波动方程适定性的公开问题,恰当地定义了Banach空间中的高阶算子微分方程Cauchy问题的算子存在族及唯一族,建立了齐次和非齐次高阶算子微分方程Cauchy问题适定性的判别定理,获得了关于高阶退化算子微分方程的算子存在族、正则余弦算子族、正则算子半群、Volterra积分方程解算子族的乘积扰动和混合扰动定理,得到了关于以依赖于时间的二阶微分算子为系数的一大类非自治热方程非齐次情形下的时变广义Wentzell动力边值问题的古典解、严格解的最大正则性结果,获得了半线性发展方程非局部Cauchy问题广义解和经典解存在唯一的判别条件,从实质上推广了现有的相关结果;得到了一部分边缘固定而另一部分附在一粘弹性刚体上的薄板构成的混合粘弹性系统的边界反馈稳定化的新稳定化定理,还建立了一系列其他研究结果。
-
This paper set up a new method of SeC determination by differential pulse voltammetry at the / GC electrode.
依据SeC的还原峰电流与其浓度成线性递增关系,在充分探讨多种影响因素的基础上建立了/GC电极上微分脉沖伏安法测定SeC含量的新方法,其线性范围为5.0×10~(-8)~7.0×10~(-4) mol·L~(-1),检出限为3×10~(-8) mol·L~(-1)。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。