一般方程
- 与 一般方程 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Applying energy variation principle, we give equation s defining parameters in flexural function, stability equation , frequency equation , and general formulae of minimum critical force and minimum eigenfrequency as well.
应用能量变分原理,给出了确定挠曲函数中待定参数的方程,以及稳定性方程和频率方程,给出了求最小临界力和最小固有频率的一般公式。
-
In most situations, the polysome system dynamic equation is the non-linearity the ordinary differential equation or the differential - algebra system of equations, it is generally obtains the equation through the computer value simulation then get the numerical solution, then through to numerical solution analysis, understanding polysome system dynamics characteristic.
多数情况下,多体系统的动力学方程是非线性常微分方程或微分-代数方程组,一般是通过计算机数值仿真得到方程的数值解,然后通过对数值解的分析,了解多体系统的动力学特性。
-
Use of the finite difference method for Volterra equation here as a variable element of the equation, As the same...
用差分方法求解沃尔泰拉方程,此处为一个变元的方程,由于该方程同时含有微分和积分,一般求解有一定的困难。
-
There are some results for the problem which confine M as only related to λ. In this paper, we break down this confinement and deal with it in a wider situation. By energy estimates and fixed point method, the existence and uniqueness theorem of th...
以前的工作仅在M是参数λ的特殊情况下做的,文中打破了这种限制,在一般情况下讨论了这类非线性双曲方程的可解性,以能量估计与不动点相结合给出了此方程有惟一局部解的存在定理,从而基本上解决了这类方程初值问题的存在惟一性。
-
Further, with the help of Riccati equations, an infinite number of conservation laws for the solton hierarchy are deduced. For the sake of simplicity, taking the general TD hierarchy as an illustrative example, we prove that its 2×2 Lenard pair of operators forms a Hamiltonian pair. Thus the isospectral evolution TD hierarchy is the general Hamiltonian system and possesses the Bi-Hamiltonian structures and Multi-Hamiltonian structures. By using the method of derivation of functional under some constraint condition, a complete one-to-one correspondence between the Hamiltonian functions of the hierarchy and its conservation density functions can be built. These results can also be applied to the isospectral evolution soliton hierarchy of this paper. Finally, there's a gauge transformation between the spectral problem of this paper and the AKNS system. Moreover, the potentials in these spectral problems satisfy the general Miura transformation, the corresponding relationship between the two soliton hierarchies is also given.
进一步本文还通过特征函数的组合关系所满足的Riccati方程,得到了该等谱方程族的无穷多个守恒律;为简便起见,本文以广义TD族为例,由它的2×2 Lenard算子对的性质证明了此算子对为Hamilton算子对,这说明广义TD族是广义Hamilton系统且具有Bi-Hamilton结构和Multi-Hamilton结构;进而利用它的依赖于谱参数的一般守恒密度的积分在约束条件下求泛函导数的方法,得到了广义TD族的Hamilton函数与守恒密度之间的对应关系,这些性质对于由本文提出的2×2谱问题所导出的等谱孤子族仍成立;另外此谱问题与AKNS系统存在着规范变换,位势之间有广义Miura变换,而孤子方程之间也满足一定的等价关系。
-
In general cases, state equation for the multiple cascaded networks can be established with the method of state equation, but it is very difficult to resolve it.
一般说,利用状态方程法是可以为多级级联网络建立状态方程的,但求解状态方程是困难的。
-
MATLAB程序-used method for multiple preoperational Ertaila equation here as a variable element of the equation, As the same time contain differential equations and integral, the general solution is definitely difficult.
用LAPLACE方法求解多维沃尔泰拉方程,此处为一个变元的方程,由于该方程同时含有微分和积分,一般求解有一定的困难。
-
Starting with the basic concept about particle transport and the universal form of transport equation, the discuss is concentrated upon the transport equation and the implicit difference scheme under 3-D Cartesian coordinate, as well as the transport equation and the discontinuous finite element scheme under 2-D cylindrical geometry.
从粒子输运的基本概念和输运方程的一般形式入手,重点讨论了三维直角坐标中子输运方程和隐式差分格式,以及二维柱坐标中子输运方程和间断有限元格式。
-
Discrete calculus , discrete probability distribution s, discrete Fourier transform s, discrete geometry , discrete logarithm s, discrete differential geometry , discrete exterior calculus , discrete Morse theory , difference equation s, and discrete dynamical system s.
在应用数学中,离散模型连续模型的离散近似。在离散模型中,离散方程are fit to 数据。使用递推关系是这种建模方式的一般方法。时标微积分是差分方程理论与微分方程理论的统一,应用在需要建立离散和连续同步数据模型的领域。
-
By discussing the basic hypotheses about the continuous orbit and discrete orbit in two research directions of the background medium theory for celestial body motion, the concrete equation forms and their summary of the theoretic frame of celestial body motion are introduced. Future more, by discussing the general form of Binet's equation of celestial body motion orbit and it's solution of the advance of the perihelion of planets, the relations and differences between the continuous orbit theory and Newton's gravitation theory and Einstein's general relativity are given. And by discussing the fractional-dimension expanded equation for the celestial body motion orbits, the concrete equations and the prophesy data of discrete orbit or stable orbits of celestial bodies which included the planets in the Solar system, satellites in the Uranian system, satellites in the Earth system and satellites obtaining the Moon obtaining from discrete orbit theory are given too.
在深入研究引力理論及廣義相對論的基礎上,通過討論天體運行背景介質理論的連續軌道及離散軌道這二個研究方向的基礎假設,介紹了天體運行軌道的具體方程形式及理論框架概要;進一步地通過討論天體運行軌道Binet方程的一般形式及其行星近日點進動角的解,給出了連續軌道理論與Newton理論及Einstein廣義相對論的聯繫與區別;通過討論天體運行軌道的分維擴展方程,給出了包括太陽系行星、天王星衛星、地球衛星、繞月航天器等在內的離散軌道方程及其預言資料。
- 推荐网络例句
-
In the negative and interrogative forms, of course, this is identical to the non-emphatic forms.
。但是,在否定句或疑问句里,这种带有"do"的方法表达的效果却没有什么强调的意思。
-
Go down on one's knees;kneel down
屈膝跪下。。。下跪祈祷
-
Nusa lembongan : Bali's sister island, coral and sand beaches, crystal clear water, surfing.
Nusa Dua :豪华度假村,冲浪和潜水,沙滩,水晶般晶莹剔透的水,网络冲浪。