一致凸空间
- 与 一致凸空间 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Based on the concepts of asymptotic center point and the asymptotic radius, this paper discusses the existence and the weak convergence of the fixed point in the multi_valued asymptotically nonexpansive mappings.
本文借助于渐近中点、渐近半径的概念,得到一致凸Banach空间中非空有界闭凸子集上的连续集值渐近非扩张映射有不动点。
-
These results were obtained without the assumption that Banach space is uniformly convex.
这些结果都不需要空间一致凸的假设。
-
Next,it proves that if E is a barrelled space and F〓 is a locally convex space,Kis all the compact operators of L,then the weak operator topology and the uniformly operator topology have the same sub-series convergence series in Kif and only if 〓 contains no copyof 〓.
其次又得到,若E是桶型空间,〓是局部凸空间,那么紧算子空间K中弱算子拓扑与一致算子拓扑具有相同子级数收敛的充要条件是〓不拓扑同胚地包含〓。
-
It investigates mainly the dualinvariant of λ- multiplier convergent series, the full invariant ofλ-multiplier convergent series, the λ- multiplier convergent series in spaceswith a basis, the compact sets in the infinite matrix topological algebras, thecharacteristics of have the same compact sets in different topologies,the weak sequentially completeness of , the characteristics ofSchur-matrices, the characteristics of p- uniform Toeplitz matrices and theEberlein-Smulian theorem in the locally convex spaces, etc.
主要研究了〓数乘收敛级数的对偶不变性,〓数乘收敛级数的全程不变性,有基空间中的〓数乘收敛级数,无穷矩阵拓扑代数〓中的紧集,〓在不同拓扑下具有相同紧集的刻划,〓的弱序列完备性,Schur—矩阵的刻划,p-一致Toeplitz矩阵的刻划以及局部凸空间上的Eberlein—Smulian定理等。
-
Xu and Noor had proved the theorem on convergence of three-step iterations for asymptotically nonexpansive mapping on nonempty closed, bounded, and convex subset of uniformly convex Banach space.
王娴 ,何震Xu和Norr已经证明了建立在一致凸Banach空间的一个非空有界闭凸子集上的渐进非扩张映射的三步迭代的收敛定理问题。
-
Li 101 proved the nonlinear ergodic theorem for semitopological semigroups of Lipschitzian mappings in the uniformly convex Banach space with the Frechet differentiable norm without using the concept of invariant mean and submean. In Chapter 1, we extend the results in [23 [24] to the case of almost-orbit.
Li[10]避开了不变平均及不变子平均的概念,在具Frechet可微范数的一致凸Banach空间中,给出了一般拓扑半群上渐近非扩张半群的遍历压缩定理。
-
Using Bruck抯 Lemma [2], Passty [7] extended to the results of [4,5] to a uniformly convex Banach space with a Frechet differentiable norm.
随后,Passty[7]又利用Bruck引理[2]将[4][5]的结果推广到具有范数Frechet可微的一致凸Banach空间中。
-
Pisier\'s results,under tree martingale valued space X is isomorphic toan a-uniformly convex space (2≤a<∞),some quasi-normal or normal inequalitiesof a-variation maximal operator and a-conditional variation maximal operator of X-valued predictable tree martingales are identified.
同时,用G.Pisier's结果在树鞅取值空间X同构于a一致凸Banach空间条件下,证明了几个X-值树鞅α-方极大算子和a-条件方极大算子的拟范数不等式与范数不等式。
-
The criteria of complex extreme point, complex rotundity and complex uniform rotundity in Musielak-Orlicz sequence spaces are given.
在矢值Musielak-Orlicz序列空间中给出复端点、复严格凸和复一致凸的充分必要判别条件。
-
Inspired by these results, in this paper, we first give the definition of a new mapping ? uniformly Lipschitz asymptotically nonexpansive mapping on a compact subset of a uniform convex Banach space, then construct three-step iterative sequences of uniformly Lipschitz asymptotically nonexpansive mapping in this subset . We proved the convergence of this three-step iterative sequences for uniformly Lipschitz asymptoticallynonexpansive mapping, Further more, we proved this three-step iterative sequences with an error member converge to fixed points.
从中得到启发,在本文我们首先定义了一致凸Banach空间某非空紧子集上的一种新的映射——一致李普希兹渐进非扩张映射,在该紧子集上构造关于一致李普希兹渐进非扩张映射的三步迭代序列以及具误差的三步迭代序列,先来讨论三步迭代序列的收敛性,进而讨论具误差的三步迭代序列的收敛性。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。