查询词典 uniformly convex space
- 与 uniformly convex space 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
We proved the nonlinear ergodic theorem for semitopological semigroups of asymptotically nonexpansive mappings in the uniformly convex Banach space with the Frechet differentiable norm. We also point out that some key conditions in [23] [24] are unnecessary.
本文第一章主要将文[23][24]中的结论推广到殆轨道的情形,这不仅回答了Lau-Takahashi[24]中的问题,而且指出了文[23][24]中的某些关键条件是不必要的。
-
Li 101 proved the nonlinear ergodic theorem for semitopological semigroups of Lipschitzian mappings in the uniformly convex Banach space with the Frechet differentiable norm without using the concept of invariant mean and submean. In Chapter 1, we extend the results in [23 [24] to the case of almost-orbit.
Li[10]避开了不变平均及不变子平均的概念,在具Frechet可微范数的一致凸Banach空间中,给出了一般拓扑半群上渐近非扩张半群的遍历压缩定理。
-
Using Bruck抯 Lemma [2], Passty [7] extended to the results of [4,5] to a uniformly convex Banach space with a Frechet differentiable norm.
随后,Passty[7]又利用Bruck引理[2]将[4][5]的结果推广到具有范数Frechet可微的一致凸Banach空间中。
-
This paper studied the iterative approximation problem of fixed points for asymptotically quasi-nonexpansive type mappings with mixed errors in uniformly convex Banach space.
研究了一致凸Banach空间中渐近拟非扩张型映象不动点具混合误差的迭代逼近问题,改进和推广了相关文献的结果。
-
In this paper, the problem of an iterative sequence approximation a common fixed point for nonexpansive non-self mappings is studied in real uniformly convex Banach space, then we obtain a strongly convergence theorem.
在实一致凸Banach空间中,讨论了关于非扩张非自映射序列逼近公共不动点的问题,获得了一个强收敛定理,改进和推广了现有文献的一些相应结果。
-
The objective of Chapter 2 is to give the weak convergence theorem of S ={T1 :t E G of asymptotically nonexpansive mappings in a uniformly convex Banach space without assuming that X has a Frechet differentiable norm.
本文第二章在G仅要求是一个定向网,X为不具有范数Frechet可微条件的一致凸Banach空间的情况下,给出了一族渐近非扩张映射的弱收敛定理。
-
In the first pa.rt,we clolinc the TC inodnhis of convexity and TC modulus of smoothness of quasi-Baiiach space, and prove that the space which is characterized by uniform convexity is same as the space which is cliaracteri/,ed by uniform TC convcxity.Then we give several characterizations of q-uniformly TC convex quasi-Banach space.At the same time ,we prove the triionned-theorcm.In the second part, we give the relationships between some inequalities of martingales with values in quasi-Banach space and uniformly TC convex quasi-Banach space.
本文分四部分,第一部分在拟Banach空间上定义了TC凸性模和TC光滑模并证明了在Banach空间上它分别和一致凸性和一致光滑性刻划的空间是一致的,即Banach空间X是一致TC凸的的充分必要条件是它是一致凸的,Banach空间X是一致TC光滑的充分必要条件是它是一致光滑的,还分别得出了判定一致TC凸和一致TC光滑的几个充分必要条件,同时还证明了在拟范数下的重赋范定理。
-
Based on some results given by K Tan and H K Xu[1] proved, the convergence of three-step iterations of uniformly Lipschitz asymptotically nonexpansive mapping on a compact subset of a uniform convex Banach space had proved.
引入一致李普希兹的概念,然后在一些已有结果的基础上,证明一致凸Banach空间的紧子集上的一致李普希兹渐进非扩张映射的三步迭代序列的收敛问题。
-
Inspired by these results, in this paper, we first give the definition of a new mapping ? uniformly Lipschitz asymptotically nonexpansive mapping on a compact subset of a uniform convex Banach space, then construct three-step iterative sequences of uniformly Lipschitz asymptotically nonexpansive mapping in this subset . We proved the convergence of this three-step iterative sequences for uniformly Lipschitz asymptoticallynonexpansive mapping, Further more, we proved this three-step iterative sequences with an error member converge to fixed points.
从中得到启发,在本文我们首先定义了一致凸Banach空间某非空紧子集上的一种新的映射——一致李普希兹渐进非扩张映射,在该紧子集上构造关于一致李普希兹渐进非扩张映射的三步迭代序列以及具误差的三步迭代序列,先来讨论三步迭代序列的收敛性,进而讨论具误差的三步迭代序列的收敛性。
-
In the fourth part, we study the growth velocity of q-mean square function of trigonometric martingales, using these we characterize TP q-uniformly convex of the space.
第四部分研究了q均方函数的增长速度与q一致TP可凸性的关系,从而用它们刻划了Banach空间的q一致TP可凸性。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。