查询词典 segmentation-cavity
- 与 segmentation-cavity 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The first section is descriptive geometry, including basic knowledge of cartography and projection, projections of point, beeline, plane and their interrelations, projection transformation, curve, curving plane, the projection of curving plane solids, line of section, line of intersection, section and segmentation, elevation projection, dimetric projection.
第一部分为画法几何:其中有制图基本知识,投影的基本知识,点、直线、平面的投影及它们之间的关系,投影变换,曲线、曲面及曲面立体的投影,截交线与相贯线,剖面图与断面图,标高投影,轴测投影等。
-
A new texture segmentation method based on directional fractal values and gray-level features is proposed in this paper.
提出了一种新的基于方向分形特征和灰度特征的纹理图像分割方法。
-
With the properties of high discreteness, the new method can distinguish the performances from different segmentation algorithms easily.
该方法所采用的评估指标具有多层次的特点,评估结果的离散性高,便于区分不同分割算法的性能。
-
A new signed distance function initial method for image segmentation model based on level set approach is proposed.
对基于水平集的图像分割模型提出了一种新的初始化符号距离函数的方法。
-
Face detection system A new design of face detection system is proposed based upon color-based skin-like region segmentation and neural network-based face distinguishment.
人脸检测系统在对基于颜色的皮肤区域分割和基于神经网络的人脸判别方法进行研究的基础上,本文提出一种新的人脸检测系统设计。
-
To overcome the drawback,a method of improved watershed segmentation algorithm is proposed in this paper.
为了克服这种缺点,本文提出了改进的图像分水岭分割的方法。
-
In this paper,we proposed a method for extracting the texture features in transform domain based on Dual Tree Complex Wavelet Transform,and applied it to unsupervised textured image segmentation.
以对偶树复小波变换为基础,提出了一种提取纹理图像变换域统计特征,进而实现图像非监督分割的方法。
-
Dual tree complex wavelet transform ; Texture image segmentation ; Markov random field ; Bayesian estimation
对偶树复小波变换;纹理图像分割;马尔可夫随机场;贝叶斯估计
-
A supervised texture image segmentation algorithm based on dual tree complex wavelet transformand Markov random fieldmodel is proposed. The algorithm consists of two steps. First, the complex transform coefficients are statistically modelled
基于对偶树复小波和马尔可夫随机场模型提出了一种监督纹理图像分割算法,算法包括两个步骤,首先对复小波变换系数进行较为精确的建模,提取其一阶统计信息作为纹理特征,综合多个尺度的信息,基于极大似然标准进行初始分割
-
It solves the problem that the unitary contour presentation can not correctly extract face contour in a face image which suffers from scale, rotation etc. The definition of the internal and external energy function is provided. At the same time, the global matching algorithm and local matching algorithm is given. The experiment shows that this presentation and the accompanying matching algorithm can be used to extract the face contour very well. So the image segmentation can be implemented by using it.②By analyzing the recognition principle of PCA method, we can conclude that the face images coming from different surrounding consist of different face image space. This is the essential reason that makes the generality of PCA method worse. Also, we give a measurement means to measure the distance from different face image space, so we can analyze face image space more conveniently.③We also construct various scale models and rotation pose models to detect the scale and rotating angle of face image to be recognized. The experiment results show that the detecting precision is very high. So it is good for face image feature extraction and face image representation.④Similarly, we construct local feature models of face image and utilize them to detect the local feature of face image. At the same time, we put forward a novel face image local feature detection algorithm, locating step by step. The experiment results show that this method can accurately detect the location of local face feature in a image.⑤A novel face image presentation model, dual attribute graph , is put forward. Firstly, it utilizes attribute graph to present the face image, then exact the local principal component coefficient and Gabor transform coefficient of thc pixels which corresponds to the nodes of the graph as the attribute of the nodes. This representation fully makes use of the statistical characteristic of the local face feature and utilizes Gabor transform to present the topographical structure of face image. So DAG has more general property.⑥Based on the DAG presentation, we give a DAG matching function and matching algorithm. During the design of the function and algorithm, the noise factor, e. g., lighting, scale and rotation pose are considered and tried to be eliminated. So the algorithm can give more general property.⑦A general face image recognition system is implemented. The experiment show the system can get better recognition performance under the noise surrounding of lighting, scale and rotation pose.
本文在上述研究的基础上,取得了如下主要研究成果:①构造了一个通用的人脸轮廓模型表示,解决了由于人脸图象尺度、旋转等因素而使得仅用单一轮廓表示无法正确提取人脸轮廓的问题,并给出了模型内、外能函数的定义,同时给出了模型的全局与局部匹配算法,实验表明,使用这种表示形式以及匹配算法,能够较好地提取人脸图象的轮廓,可实际用于人脸图象的分割;②深入分析了PCA方法的识别机制,得出不同成象条件下的人脸图象构成不同的人脸图象空间的结论,同时指出这也是造成PCA方法通用性较差的本质原因,并给出了不同人脸空间距离的一种度量方法,使用该度量方法能够直观地对人脸图象空间进行分析;③构造了各种尺度模板、旋转姿势模板以用于探测待识人脸图象的尺度、旋转角度,实验结果表明,探测精确度很高,从而有利于人脸图象特征提取,以及图象的有效表示;④构造了人脸图象的各局部特征模板,用于人脸图象局部特征的探测;同时提出了一种新的人脸图象局部特征探测法---逐步求精定位法,实验结果表明,使用这种方法能够精确地得到人脸图象各局部特征的位置;⑤提出了一种新的人脸图象表示法---双属性图表示法;利用属性图来表示人脸图象,并提取图节点对应图象位置的局部主成分特征系数以及Gabor变换系数作为图节点的属性,这种表示方法充分利用了人脸图象的局部特征的统计特性,并且使用Gabor变换来反映人脸图象的拓扑结构,从而使得双属性图表示法具有较强的通用性;⑥在双属性图表示的基础上,给出双属性图匹配函数及匹配算法,在函数及算法设计过程中,考虑并解决了光照、尺度、旋转姿势变化等因素对人脸图象识别的影响,使得匹配算法具有较强的通用性;⑦设计并实现了一个通用的人脸图象识别系统,实验结果表明,该系统在图象光照、尺度、旋转姿势情况下,得到了较好的识别效果。
- 推荐网络例句
-
Breath, muscle contraction of the buttocks; arch body, as far as possible to hold his head, right leg straight towards the ceiling (peg-leg knee in order to avoid muscle tension).
呼气,收缩臀部肌肉;拱起身体,尽量抬起头来,右腿伸直朝向天花板(膝微屈,以避免肌肉紧张)。
-
The cost of moving grain food products was unchanged from May, but year over year are up 8%.
粮食产品的运输费用与5月份相比没有变化,但却比去年同期高8%。
-
However, to get a true quote, you will need to provide detailed personal and financial information.
然而,要让一个真正的引用,你需要提供详细的个人和财务信息。