查询词典 quaternion algebra
- 与 quaternion algebra 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The research of matrixes is continuously an important aspect of the quaternion division algebra. The purpose of this paper is to discuss the property of skew self-conjugate matrix. The definition of skew self-conjugate matrix on real quaternion division algebra is given.
四元数体上矩阵的研究是四元数代数理论中的一个重要方面,本文研究实四元数体上斜自共轭矩阵的性质,给出实四元数体上斜自共轭矩阵的定义。
-
Basing on the famous Schur theorem on real quaternion division algebra and the operation of matrix, some properties and judging criterions of skew self-conjugate matrix are obtained. Several theorems about characteristic value, similar decomposition and real expression of skew self- conjugate matrix are gained.
借助四元数体上的Schur三角分解定理和体上矩阵的运算,得到了斜自共轭矩阵的一些性质及判定准则,获得了斜自共轭矩阵的实表示、相似分解以及特征值的几个定理。
-
In this note, we show that for any two matrices A and B over a generalized quaternion algebra defined on an arbitrary field F of characteristic not equal to two, if A and B are similar and the main diagonal elements of A and B are in F, then their traces are equal.
本文对于特征不是2的任意域F上定义的广义四元数代数上的两个矩阵A和B,给出如果A和B相似并且它们的主对角线上的元素在F中,那么它们的迹相等。
-
In this note, we show that for any two matrices $A$ and $B$ over a generalized quaternion algebra defined on an arbitrary field ${\bf F}$ of characteristic not equal to two, if $A$ and $B$ are similar and the main diagonal elements of $A$ and $B$ are in $\bf F$, then their traces are equal.
本文对于特征不是2的任意域${\bf F}$上定义的广义四元数代数上的两个矩阵$A$和$B$,给出如果$A$和$B$相似并且它们的主对角线上的元素在${\bf F}$中,那么它们的迹相等。
-
Computer; mathematical problems; Mizar project; quaternion numbers; algebra structure
计算机;数学问题; Mizar系统;四元数;代数结构
-
This paper adopts new algebra structure of quaternion matrix,to study how to apply a variety of iterative algorithm to quaternion linear systems.
本文通过引入四元数矩阵的新代数结构表示运算,研究如何将多种迭代算法应用于四元数线性系统上。
-
Because of Its wide-ranging connection with many applied science, such as the quantum physics, geostatic, the figure and pattern recognition and the space telemetry and so forth, the research in quaternion algebra is valuabe.
四元数在众多的应用问题中存在广泛的联系,如四元数在量子力学,刚体力学方面的应用,在计算机图形图像处理和识别方面的应用,在空间定位方面的应用等。
-
In this paper,pose representation by quaternions are researched.With the basic quaternion algebra,the "quaternion based rotations combination theorem" is introduced and proved theoretically.On the basis of this theorem,a method for compute of pose nonliear state transfer function and its linearization is purposed.Then,the computing of the measurement function and the linearization is studied.With the Extended Kalman Filter,the pose is tracked and estimated.
研究用四元数表示物体的姿态,在四元数基本运算法则基础上提出并证明了"基于四元数的多个旋转运动合成规则",然后将此规则为依据,推导出一种用来计算姿态非线性状态方程系数的方法,对非线性状态转移函数进行线性化,并且研究了测量方程函数的确定及线性化,借助扩展Kalman滤波实现了对姿态的跟踪。
-
Quaternion is applied widely in many domains, such as algebra, geometry, physics, engineering and so on.
四元数在代数学,几何学,物理学,工程技术等方面有着广泛和重要的应用。
- 推荐网络例句
-
The split between the two groups can hardly be papered over.
这两个团体间的分歧难以掩饰。
-
This approach not only encourages a greater number of responses, but minimizes the likelihood of stale groupthink.
这种做法不仅鼓励了更多的反应,而且减少跟风的可能性。
-
The new PS20 solar power tower collected sunlight through mirrors known as "heliostats" to produce steam that is converted into electricity by a turbine in Sanlucar la Mayor, Spain, Wednesday.
聚光:照片上是建在西班牙桑路卡拉马尤城的一座新型PS20塔式太阳能电站。被称为&日光反射装置&的镜子将太阳光反射到主塔,然后用聚集的热量产生蒸汽进而通过涡轮机转化为电力