英语人>网络例句>parameter equation 相关的网络例句
parameter equation相关的网络例句

查询词典 parameter equation

与 parameter equation 相关的网络例句 [注:此内容来源于网络,仅供参考]

In this topic, the dynamic analysis methods for piezoelectric vibrator are studied systematically based on the theoretical model, FEM numerical experimentation and FEM governing equation for given compound-mode vibrator, and some valuable conclusions are obtained. The main work accomplished is summarized as follows: 1.Elaborate the main modeling methods for piezoelectric vibrator and the significance and necessity to study the dynamic characteristics of piezoelectric vibrator which emphasize the urgency of this paper. 2.Take the bending deformation induced by piezoelectric ceramic as example, the energy transfer mechanism of electric energy to mechanical energy are analyzed; the motion and force transfer mechanism are analyzed for the longitudinal-bending vibrator. 3.Based on mode assumption and Hamilton principle, the coupling model of piezoelectric vibrator of linear USM is built; moreover, the equivalent circuit model is obtained and a coupling equation represents the relation between electric parameters and mechanical parameters is derived which provides foundation to match the vibrator and driving circuit. 4.Combine the constitutive equation of piezoelectric ceramic with elastic-dynamical equation, geometric equation in force field and the Maxwell equation in electric field and the corresponding boundary condition equation, the FEM control equation for piezoelectric vibrator of USM to solve dynamic electro-mechanical coupling field is established by employing the principle of virtual displacement. The equation lays the foundation to study the non-linear constitutive equation of piezoelectric ceramic driven by high-power. 5.Define the dynamic indexes of characteristic of vibrator and carry out variable parameters simulation by calculating the model parameters and the electric characteristics of vibrator are simulated according to the equivalent circuit model. By numerical experimentation, the working mode of vibration of vibrator and the shock excitation results of the working frequency band which provides the mode frequency to realize bimodal are analyzed. Detailed calculation of the electro-mechanical coupling field parameters is made by programming the FEM control equation.

本课题从理论模型、有限元数值试验、有限元控制模型等方面以复合振动模式振子为例对超声电机压电振子的动力学特性及其分析方法进行了全面系统地研究,得出了许多有价值的结论,主要概括如下: 1、阐述了目前针对超声电机压电振子的主要建模方法,对压电振子动态特性的研究意义和必要性进行了论述,突出了本文研究内容的迫切性; 2、以压电陶瓷诱发弹性体发生弯曲变形为例,分析了压电陶瓷通过诱发应变来实现机电能量转换的机理;对基于纵弯模式的压电振子的运动及动力传递机理进行了分析; 3、基于模态假定,利用分析动力学的Hamilton原理,建立了面向直线超声电机压电振子的机电耦合动力学模型,并据此建立了压电振子的等效电路模型,导出了电参量与动力学特性参量的耦合方程,为压电振子与驱动电路的匹配提供了依据; 4、从压电陶瓷的本构方程出发,综合力场的弹性动力学方程、几何方程、电场的麦克斯韦方程以及相应的边界条件方程,采用虚位移原理,建立了压电振子动态问题机电耦合场求解的有限元控制方程,为研究其大功率驱动下的非线性本构模型奠定了基础; 5、界定压电振子的动力学特性指标,对压电振子的机电耦合动力学模型参数进行计算及变参数仿真;依据等效电路模型,对压电振子的电学特性进行了仿真分析;通过有限元数值实验,对压电振子工作模态附近的模态振型及工作频率附近的频段进行了激振效果分析,找出了实现模态简并的激振频率;利用有限元控制方程,通过编程计算,对压电振子的力电耦合场参数进行了详细计算,得出了一些有价值的结论。

First make the subjects give either right or wrong responses to the same question with different b value. When estimating the abilities of the subjects with the use of one-parameter or two-parameter Logistic model, it is found that there exists two kinds of unfits.(2) Estimate the abilities of the subjects after introducing c parameter on the basis of the two-parameter model. The first unfit can be rectified. However, the second unfit still exists and the third unfit appears.(3) Then estimate again after introducing y parameter. It is discovered that the second unfit is rectified, but the first unfit still exists and the fourth unfit appears.(4) Form Logistic four-parameter model by introducing c parameter and y parameter at the same time and estimate one more time. This model makes all kinds of unfits, including the first, second, third and fourth unfits, rectified.

1设计这批被试分别做对或做错一道b值不同的试题,用Logistic单、双参数模型对被试进行能力估计时,发现被试能力估计存在着两类失拟现象;(2)在双参数模型基础上增加c参数,对被试进行能力估计,发现c参数能有效纠正第一失拟现象,然而仍然存在第二失拟现象,同时还存在第三失拟现象;(3)在双参数模型基础上增加γ参数,再对被试进行能力估计,发现γ参数能有效纠正第二失拟现象,而仍然存在第一失拟现象,同时还存在第四失拟现象;(4)同时增加c、γ参数形成Logistic四参数模型,再对被试进行能力估计,这时该模型对各类失拟现象,包括第一、第二、第三、第四失拟现象都具有良好拟合能力。

Several important nonlinear equations of mathematical physics such as φ4 equation, Klein-Gordon equation, the approximate equations of sine-Gordon equation and sinhGordon equation, Landau-Ginzburg-Higgs equation, Duffing equation, nonlinear telegraph equation are the special cases of the nonlinear wave equation presented in this paper.

几个有重要应用的非线性数学物理方程,如矿方程,Klein-Gordon方程,Sine-Gordon方程,及Sinh-Gordon方程的近似,Landau-Ginzburg-Higgs方程,Duffing方程,非线性电报方程等都可作为该方程的特殊情形得到相应的显式精确解,这里方法也可推广到n+1维空间情形。

In this paper,results of Markov chain are used under the circumstances of the automaton model which belongs to logical level of Discrete Event System to analyze the steady states and transient states of the Markov model of DES,respectively based on four conditions of discrete-time parameter and continuous-time parameter.A simpler decision rule of system ergodic property which applies both to the conditions of discrete-time parameter and continuous-time parameter is presented through an example.The transient states of DES which under the condition of continuous-time parameter are analyzed and computed based on Kolmogorov backward equation or forward equation.

利用马尔科夫链的结果,在离散事件系统逻辑层次的自动机模型基础上,对DES的Markov模型的稳态和暂态特性,分别从时间参数连续和离散的情况下,分四个情况进行了分析,通过实例对系统遍历性提出了一条更简单的且在连续和离散时间参数情况下都通用的判定规则,并利用Kolmogorov向后或向前方程,对连续时间参数DES的暂态特性进行了分析和计算。

The asymptotical properties of KdV equation and KP equation exhibit the soliton behavior when some conditions are satisfied, and in some cases the parameter matrices describing the interaction between two solutions is quite simple. Two kinds of solutions of the second coupled equations of AKNS hierarchy are provided and applied to NLS equation. A systemical way of construction of special solutions is also tried for DS equation. Most of the results on a scalar equation can often be directly generalized to some matrix equation, and the difference between the ω in scalar form and ω in matrix form lies only in the replacement of vector p, q by matrices p, q.

对KdV方程和KP方程渐近性质的讨论显现出解在一定条件下的孤子特性,从而使得一些情形下,同类解的相互作用体现在参数矩阵上变的较简单;我们给出了AKNS方程的两类不同解,并约化到NLS;对DS方程,我们从另一个方面初步探讨了形式化推导矩阵方程特解的方法;把这些有关标量ω的结果推广到ω为矩阵上往往只要把p,q变为矩阵即可,进而可以再推广到方程组上。

Establish the steady-state and transient model using the three hydrodynamics equations (Continuity equation, Momentum equation and Energy equation). By comparing different state equation, it selects the BWRS state equation which is considered the most accurate state equation in current natural gas measurement. It calculates compression factor, density and other Thermal parameters based on BWRS state equation. In Numerical solution of the steady-state and transient model, compression factor, friction coefficient and all the other Thermal parameters are recalculated in each small time step to reduce the numerical calculation error.

在稳态模型的建立上,利用流体力学三大方程(连续性方程、运动方程和能量方程),通过比较不同的状态方程选用了目前被认为最精确的用于天然气计量的BWRS状态方程,并以此方程为基础进行压缩因子、密度等热物性参数的计算;在稳态模型的求解上,选用容易计算,精度较高的标准型龙格—库塔(Runge-Kutta)法进行数值求解,并且在迭代过程的每一小步都重新计算燃气的压缩因子,摩阻系数等所有的计算参数,以减少数值计算的误差。

Chapter 2 is devoted to study of exact solutions of the nonlinear evolution equations. Using solutions of a Bernoulli equation instead of tanh in tanh-function method we find some more general solutions of the KdV-Burgers-Kuramoto equation , and by using the nonlinear telegraph equation we show that there are many different choices on its balancing number m and the power n of the nonlinear term in Bernoulli equation by which we can recover the previously known solutions and also can derive new square root type solitary wave solutions. Exact solitary wave solutions for a surface wave equation are obtained by means of the homogeneous balance method. We also present an approach for constructing the solitary wave solutions and non-solitary wave solutions of the nonlinear evolution equations by using the homogeneous balance method directly, which is also used to find the steady state solutions, solitary wave solutions and the non-solitary wave solutions of the 2+1 dimensional dispersive long wave equations. The soliton-like solutions of the BLMP equation and the 2+1 dimensional breaking soliton equation are found by use of the symbolic-computation-based Method.

第二章中研究了非线性发展方程的精确解:用双曲正切函数法中的双曲正切函数换为Bernoulli方程的解的方法而给出KdV-Burgers-Kuramoto方程的精确解并用非线性电波方程为例说明了平衡数m和Bernoulli方程中非线性项的次数n有着多种选择的可能,它不但使我们能找到已知解而且也能找出新的根式孤立波解;用齐次平衡法给出一个曲面波方程的精确孤立波解,并提出直接用齐次平衡法寻找非线性发展方程的孤立波解、非孤立波解的方法,作为应用给出2+1维色散长波方程组等的定态解、孤立波解、非孤立波解等;用Symbolic-computation-basedMethod获得BLMP方程和2+1维破裂孤子方程的类孤子解;提出sine-Gordon型方程的直接求解方法,并获得sine-Gordon方程、双sine-Gordon方程、sinh-Gordon方程、MKdV-sine-Gordon方程和Born-Infeld方程等的精确孤立波解。

And the channel composed of the new radio induction system for communication is different from the parameter-constant channel and the traditional parameter-changing channel, its parameter is decided by the mutual induction between its antenna and induction-cable, by the location of its antenna, by the signal frequency passing through, its parameter has nothing to do with the time parameter. The channel composed of the new radio induction system is a new parameter-changing channel independently of time for communication.

而且,由新型无线感应系统组成的信道既不是恒参信道,也不是一般目前所知的变参信道,其信道传递函数的幅值只与信号的频率有关,与系统中天线和感应电缆之间的互感和天线的位置有关,而与时间无关,其信道传递函数的相位只与天线的位置有关,而与时间无关,由新型无线感应系统组成的信道是一种不随时间变化的新型变参信道。

Finally, in the third section, by constructing some functional which similar to the conservation law of evolution equation and the technical estimates, we prove that in the inviscid limit the solution of generalized derivative Ginzburg—Landau equation converges to the solution of derivative nonlinear Schrodinger equation correspondently in one-dimension; The existence of global smooth solution for a class of generalized derivative Ginzburg—Landau equation are proved in two-dimension, in some special case, we prove that the solution of GGL equation converges to the weak solution of derivative nonlinear Schr〓dinger equation; In general case, by using some integral identities of solution for generalized Ginzburg—Landau equations with inhomogeneous boundary condition and the estimates for the L〓 norm on boundary of normal derivative and H〓 norm of solution, we prove the existence of global weak solution of the inhomogeneous boundary value problem for generalized Ginzburg—Landau equations.

第三部分:在一维情形,我们考虑了一类带导数项的Ginzburg—Landau方程,通过构造一些类似于发展方程守恒律的泛函及巧妙的积分估计,证明了当粘性系数趋于零时,Ginzburg—Landau方程的解逼近相应的带导数项的Schr〓dinger方程的解,并给出了最优收敛速度估计;在二维情形,我们证明了一类带导数项的广义Ginzburg—Landau方程整体光滑解的存在性,以及在某种特殊情形下,GL方程的解趋近于相应的带导数项的Schr〓dinger方程的弱解;在一般情形下,我们讨论了一类Ginzburg—Landau方程的非齐次边值问题,通过几个积分恒等式,同时估计解的H〓模及法向导数在边界上的模,证明了整体弱解的存在性。

The equation for item level from item slot is a logarithmic equation and the equation from item level to weapon DPS would require an exponential equation, therefore an equation from item slot value, the value prior to item level, to weapon DPS would be a linear equation.

武器DPS是物品等级中一个很有趣的属性,因为它似乎有多种计算方法。最近加入的传家宝物品可以提出和回答这个问题。物品等级在57以前的时候,它的计算方法和蓝装的线形公式一样,传家宝武器不是线形增长的,似乎是介于线形和多项式增长之间。在58-67的时候,传家宝武器的DPS随物品等级成指数增长。在68-80的时候,武器DPS也是成指数增长,但是速度不同。在100-226之间的史诗物品成相同的指数增长。

第1/500页 1 2 3 4 5 6 7 8 9 ... > 尾页
相关中文对照歌词
Algebra
Persuasion
Things
Behold The Wicked Child
Have They Forgotten
Simple Equation
Love Is Easy
Chalupa
Excite Dyke
Trylogy
推荐网络例句

Through comparing with the results by simulation to study the effects of theprojectile"s final velocity, the angle of rotation and the ballistic trajectory"s migration withdifferent projectile"s rotating speeds, different target"s moving speeds and differentpenetration angles.

通过比较数值模拟的结果来研究不同弹头转速、目标速度、侵彻角对侵彻过程中弹头最终速度、翻转角度和弹道偏移的影响。

I love stationery and all the accoutrement of writing.

我爱文具以及所有的书写的工具装备。

Just loll there: quiet dusk: let everything rip.

只消懒洋洋地享受这宁静的黄昏,一切全听其自然。