英语人>网络例句>opioid 相关的网络例句
opioid相关的网络例句

查询词典 opioid

与 opioid 相关的网络例句 [注:此内容来源于网络,仅供参考]

Mu opioid receptor was not observed in the wrist, funnel, abdomen of mantle, mouth, craw, stomach theca, intestine, rectum, sialoid gland, liver. Weak positive mu opioid receptor immunoreaction was found in inner epidermis, ectoblast, connective tissue of the esophagus and the keratolytic of the stomach and positive immunoreaction in epidermis of back of mantle and membrane of wrist.

结果表明,短蛸腕、漏斗、外套膜腹面、口球、嗉囊、胃盲囊、肠、直肠、前唾液腺、后唾液腺、肝胰脏均呈μ受体阴性,但食道内上皮、外膜、结缔组织和胃角质层有μ受体分布,外套膜背面、腕间膜的上皮或近上皮部位呈μ受体阳性。

The choice of opioid would be either an ultra-short-acting opioid, such as remifentanil, for a short-lived painful stimulus (i.e., esophagoscopy) or a longer acting opioid, such as fentanyl, for a persistent painful stimulus (i.e., an incision).

可以选择超短效的瑞芬太尼处理短暂疼痛刺激,或较长效的芬太尼处理持续的疼痛刺激。

Malanga etc by the activity that GABA inhibition of opioid etc, and is confirmed with echors exist on the function of opioid GABA synergistic action.

Malanga等发现GABA的活性受到阿片类物质的抑制,而Echo等则证实阿片与GABA存在功能上的协同作用。

Naltrexone and nalmefene are antagonists of opioid receptors, and they can suppress inflammation with blocking the opioid receptors.

纳美芬与纳美芬酮是一种类鸦片受体的对抗剂,可以透过阻断类鸦片受体来达到抗发炎效果。

Aim: To determine whether activation of κ-opioid receptor with U50,4 88 H, a selective κ-opioid receptor agonist, produces any changes in electrical u ncoupling during prolonged ischemia and whether these changes in electrical unco upling is associated with the cardioprotection induced by κ-opioid receptor ac tivation, and to explore the possible mechanism.

测量指标:以分光光度计在490nm波长下测定氯化三苯基四氯唑与活细胞反应的产物formazan含量的方法测定心肌细胞活性、测定冠脉流出液中乳酸脱氢酶的含量以及心室内压;②全心停灌70min,应用四电极法观察不同浓度U50,488H、nor-BNI和5-HD对缺血期间心肌整体阻抗和电脱耦联参数(电脱耦联时间、平台时间、电脱耦联最大速率和阻抗倍数)的影响。

E. , ACTH antagonizes the analgesia mediated byμand δ opioid receptors, but notκreceptor;(2) The antagonizing effect of ACTH on opioid analgesia is proposed to be mediated by ACTH receptors, although the latter has not been characterized;(3) A contradictory interaction on intracellular cAMP content may constitute one of the postreceptor mechanisms underlying ACTH antagonism of opioid analgesia;(4) Another proposed mechanism of the anti-opioid effect of ACTH is that ACTH can modulate opioid-induced suppression of calcium influx;(5) ACTH has been shown to induce Fos protein expression in selected areas of the rat brain including the nuclei involved in pain regulation as well as the ependyma of the third ventricle and the aqueduct.

根据以上实验结果,本论文首次提出以下论点:(1)ACTH在脊髓水平对抗阿片镇痛具有受体选择性,即ACTH可对抗μ受体和δ受体介导的镇痛,不对抗κ受体所介导的镇痛;(2)由于ACTH与阿片μ受体的肽类配体的结合位点仅有很低的亲和力,与μ受体的非肽类配体的结合位点以及δ受体无亲和力,推测ACTH是通过中枢内的ACTH受体介导发挥抗阿片效应的;(3)ACTH抗阿片作用的受体后作用机制之一是在cAMP信使通路水平与阿片发生相互作用;(4)ACTH抗阿片作用的另一受体后机制是在〓水平影响阿片的效应;(5)通过Fos蛋白的诱导揭示:ACTH可以作用于脑内多个核团,其中包括许多与痛觉调制有关的核团,推测ACTH可能通过激活这些核团的神经元而发挥其中枢效应。

Besides neurokinins, recently we found that the dominant opioid receptor, delta subtype, was existed in renal pelvis and intrapelvic activation of DOR resulted dose-dependent increases in ANRA, suggested that DOR plays a role in regulating renal sensory response.

除了神经激肽受体之外,本实验室最近也发现类鸦片受体在肾盂表现并且其中以delta亚型的类鸦片受体(delta-opioid receptor, DOR)为主,活化肾盂内DOR可够剂量依存性地增加传入性肾神经的活性,所以DOR可调控肾脏感觉功能。

The opioid receptor agonist at the supraspinal site failed to alter the pelvic nerve activity suggest that supraspinal endogenous opioid system does not act directly on the sacral preganglionic neurons, but indirectly through descending fibers on the interneuron at the level of afferent inputs in the sacral spinal cord.

由於注射此药物到侧脑室中,并不会对骨盆神经之活性造成影响,因此推论上脊髓部位的内吗啡系统,并不会直接影响副交感神经节前神经元之活性,其作用可能在中问神经元或膀胱的输入神经。

Meperidine is one of the most commonly used opioid for the relief of acute pain. However, this full opioid-agonist may also cause several adverse effects related to its pharmacological actions, including the less-recognized serotonin syndrome.

Meperidine是一个最普遍使用的吗啡类急性疼痛止痛剂,但是,此吗啡受体促动剂也可能导致若干药理学的不良反应,包括不易辨识的血清素症候群。

The effects and mechanism of GABAergic neurons, NOergic neurons, opioid peptide and cyclic adenosine monophosphate in the nucleus reticularis thalami on sleep-wakefulness cycle of rats and the effects and mechanism of the 5-HTergic nerve fibers project from the nucleus raphes dorsalis to RT on sleep-wakefulness cycle of rats were investigated with the methods of brain stereotaxic, nucleus spile, microinjection and polysomngraphy.1. The effects of GABAergic neurons in RT on sleep-wakefulness cycle of rats1.1 Microinjection of 3-mercaptopropionic acid (3-MP, a kind of glutamate decarboxylase inhibitor) into RT. On the day of microinjection, sleep only decreased a litter. On the second day, sleep marked decreased and wakefulness marked increased. On the third and fourth day, sleep and wakefulness stages resumed to normal.1.2 Microinjection of gamma-amino butyric acid (GABA 1.0μg) into RT enhanced sleep and reduced wakefulness compared with control; while microinjection of L-glutamate (L-Glu, 0.2μg) decreased sleep and increased wakefulness; microinjection of bicuculline (BIC, 1.0μg), a GABAA receptor antagonist, enhanced wakefulness and reduced sleep; microinjection of baclofen (BAC, 1.0μg), GABAB receptor agonist, had the same effects as GABA.2. The effects of NOergic neurons in RT on sleep-wakefulness cycle of rats2.1 Microinjection of L-arginine (L-Arg, 0.5μg) into RT decreased sleep compared with control, but there were on statistaical difference between L-Arg group and control; while microinjection of sodium nitroprusside (SNP, 0.2μg), a NO donor into RT, sleep marked decreased and wakefulness marked increased. Microinjection of nitric oxide synthase inhibitor, N-nitro-L-arginine (L-NNA, 2.0μg) into RT enhanced sleep and reduced wakefulness.2.2 After simultaneous microinjection of L-NNA (2.0μg) and SNP (0.2μg) into RT, SNP abolished the sleep-promoting effect of L-NNA compared with L-NNA group; after simultaneous microinjection of L-NNA (2.0μg) and L-Arg(0.5μg) into RT, we found that L-NNA could not blocked the wakefulness-promoting effect of L-Arg.3. The effects of opioid peptide in RT on sleep-wakefulness cycle of rats3.1 Microinjection of morphine sulfate (MOR, 1.0μg) into RT increased wakefulness and decreased sleep compared with control; while microinjection of naloxone hydrochloride (NAL, 1.0μg), the antagonist of opiate receptors, into RT, enhanced sleep and reduced wakefulness.3.2 After simultaneous microinjection of MOR (1.0μg) and NAL (1.0μg) into RT, the wakefulness-promoting effect of MOR and the sleep-promoting effect of NAL were not observed compared with control.4. The effects of cAMP in RT on sleep-wakefulness cycle of rats Microinjection of cAMP (1.0μg) into RT increased sleep and decreased wakefulness compared with control; microinjection of methylene blue (MB,1.0μg) into RT enhanced sleep and reduced wakefulness compared with control.5. The effects of the 5-HTergic nerve fibers project from DRN to RT on sleep-wakefulness cycle of rats5.1 When L-Glu (0.2μg) was microinjected into DRN and normal sodium (NS,1.0μg) was microinjected into bilateral RT. We found that sleep was decreased and wakefulness was increased compared with control; when L-Glu (0.2μg) was microinjected into DRN and methysergide (MS,1.0μg), a non-selective 5-HT antagonist, was microinjected into bilateral RT, We found that sleep was enhanced and wakefulness was reduced compared with L-Glu group.5.2 When p-chlorophenylalanine (PCPA, 10μg) was microinjected into DRN and NS (1.0μg) was microinjected into bilateral RT, We found that sleep was increased and wakefulness was decreased compared with control; microinjection of 5-hydroxytryptaphan (5-HTP, 1.0μg), which can convert to 5-HT by the enzyme tryptophane hydroxylase and enhance 5-HT into bilateral RT, could block the effect of microinjection of PCPA into DRN on sleep-wakefulness cycle.

本研究采用脑立体定位、核团插管、微量注射、多导睡眠描记等方法,研究丘脑网状核(nucleus reticularis thalami,RT)中γ-氨基丁酸(gamma-amino butyric acid ,GABA)能神经元、一氧化氮(nitrogen monoxidum,NO)能神经元、阿片肽类神经递质、环一磷酸腺苷(cyclic adenosine monophosphate,cAMP)及中缝背核(nucleus raphes dorsalis,DRN)至RT的5-羟色胺(5-hydroxytryptamine,5-HT)能神经纤维投射对大鼠睡眠-觉醒周期的影响及其作用机制。1 RT内GABA能神经元对大鼠睡眠-觉醒周期的影响1.1大鼠RT内微量注射GABA合成关键酶抑制剂3-巯基丙酸(3-MP,5μg),注射当天睡眠时间略有减少,第二日睡眠时间显著减少,觉醒时间明显增多,第三、四日睡眠和觉醒时间逐渐恢复至正常。1.2大鼠RT内微量注射GABA受体激动剂GABA( 1.0μg)后,与生理盐水组比较,睡眠时间增加,觉醒时间减少;而RT内微量注射L-谷氨酸(glutamic acid, L-Glu, 0.2μg)后,睡眠时间减少,觉醒时间增加;RT内微量注射GABAA受体阻断剂荷包牡丹碱(bicuculline,BIC,1.0μg)后,睡眠时间减少,觉醒时间增加;RT内微量注射GABAB受体激动剂氯苯氨丁酸(baclofen,BAC,1.0μg)后,产生了与GABA相似的促睡眠效果。2 RT内NO能神经元对大鼠睡眠-觉醒周期的影响2.1大鼠RT内微量注射NO的前体L-精氨酸(L-Arg,0.5μg)后,与生理盐水组对比,睡眠时间略有减少,但无显著性意义;而RT内微量注射NO的供体硝普钠(Sodium Nitroprusside,SNP,0.2μg)后可明显增加觉醒时间,缩短睡眠时间;微量注射一氧化氮合酶抑制剂L-硝基精氨酸(L-arginine,L-NNA,2.0μg)后,引起睡眠时间增多,觉醒时间减少。2.2大鼠RT内同时微量注射L-NNA(2.0μg)和SNP(0.2μg)后与L-NNA组比较发现SNP逆转了L-NNA的促睡眠作用;RT内同时微量注射L-NNA(2.0μg)和L-Arg(0.5μg)后,与L-NNA(2.0μg)组比较发现L-Arg可以增加觉醒而缩短睡眠,其促觉醒作用未能被NOS的抑制剂L-NNA所逆转。3 RT内阿片肽对大鼠睡眠-觉醒周期的影响3.1大鼠RT内微量注射硫酸吗啡(morphine sulfate,MOR,1.0μg)后与生理盐水组对比,睡眠时间减少而觉醒时间增加; RT内微量注射阿片肽受体拮抗剂盐酸纳洛酮(naloxone hydrochloride,NAL,1.0μg)后与生理盐水组比较,睡眠时间增加而觉醒时间减少。3.2大鼠RT内同时微量注射MOR(1.0μg)和NAL(1.0μg)后,与生理盐水组对比,原有的MOR促觉醒效果和NAL的促睡眠效果都没有表现。4 RT内环一磷酸腺苷信使对大鼠睡眠-觉醒周期的影响大鼠RT内微量注射cAMP(1.0μg)后与NS(1.0μg)组比较,睡眠时间增多而觉醒时间减少;RT内微量注射亚甲蓝(methylene blue,MB,1.0μg)后,与NS组比较,睡眠时间增多而觉醒时间减少。5中缝背核投射到丘脑网状核的5-羟色胺能神经纤维对大鼠睡眠-觉醒周期的影响5.1大鼠DRN内微量注射L-Glu(0.2μg),同时在双侧RT内微量注射NS (1.0μg)后,与对照组(DRN和双侧RT注射NS, 0.2μg)比较,睡眠时间减少,觉醒时间增多;大鼠DRN内微量注射L-Glu(0.2μg),同时在双侧RT内微量注射二甲基麦角新碱(methysergide, MS, 1.0μg )后,与对照组(DRN注射L-Glu 0.2μg,双侧RT注射NS 1.0μg)比较,睡眠时间增多,觉醒时间减少。5.2大鼠DRN内微量注射对氯苯丙氨酸(p-chlorophenylalanine,PCPA,10μg),同时在双侧RT内微量注射NS (1.0μg)后,与对照组(DRN和双侧RT注射NS, 1.0μg)比较,睡眠时间增多,觉醒时间减少;大鼠DRN内微量注射PCPA(10μg),产生睡眠增多效应后,在双侧RT内微量注射5-羟色胺酸(5-hydroxytryptaphan , 5-HTP, 1.0μg )后,与对照组(DRN注射PCPA 10μg,双侧RT注射NS 1.0μg)比较,睡眠时间减少,觉醒时间增多。

第1/11页 1 2 3 4 5 6 7 8 9 ... > 尾页
推荐网络例句

Singer Leona Lewis and former Led Zeppelin guitarist Jimmy Page emerged as the bus transformed into a grass-covered carnival float, and the pair combined for a rendition of "Whole Lotta Love".

歌手leona刘易斯和前率领的飞艇的吉他手吉米页出现巴士转化为基层所涵盖的嘉年华花车,和一双合并为一移交&整个lotta爱&。

This is Kate, and that's Erin.

这是凯特,那个是爱朗。

Articulate the aims, objectives and key aspects of a strategic business plan.

明确的宗旨,目标和重点战略业务计划。