查询词典 operator algebras
- 与 operator algebras 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The main subjects of the volume include:- spectral analysis of periodic differential operators and delay equations, stabilizing controllers, Fourier multipliers;- multivariable operator theory, model theory, commutant lifting theorems, coisometric realizations;- Hankel operators and forms;- operator algebras;- the Bellman function approach in singular integrals and harmonic analysis, singular integral operators and integral representations;- approximation in holomorphic spaces.
卷包括:主要课程-定期微分算子和延迟方程谱分析,稳定控制器,傅立叶乘数;-多变量算子理论,模型论,换位解除定理,coisometric变现;- Hankel算子和形式;-算子代数;-在奇异积分和谐波分析,奇异积分算子和积分表示贝尔曼函数方法;-在全纯空间近似。
-
We mainly consider completely monotone functions from semigroup to operator algebras.
我们主要讨论了作用在半群上取值于算子代数的完全单调函数。
-
Derivable mappings play an important role in the study of the structure of operator algebras.
引言导子是算子代数领域的一类重要映射,它对认识算子代数的结构有着重要的作用,如文献[2-3]。
-
In this paper, we mainly disscuss derivable mappings at zero point, Jordan derivations and 2-local derivations on some operator algebras. The details as following:In chapter 1, some notations, definitions are introduced and some theorems are given.
本文主要对几类算子代数上的在零点可导映射和Jordan导子以及2-局部导子进行了研究,具体内容如下:第一章主要介绍了本文中要用到的一些符号,定义以及本文要用到的一些已知结论和定理。
-
Nest algebra is an important class of non-selfadjoint reflexive operator algebras, which is the natural generalization of upper triangular matrix algebra in infinite dimensional space.
中文摘要:套代数是一类重要的非自伴、自反算子代数,它是上三角矩阵代数在无穷维空间上的自然推广。
-
In this thesis, we mainly discuss the linear preserver problems on operator algebras.
本文主要讨论算子代数上有关线性保持的一些问题,全文共分四章。
-
The purpose of studing LPP is to discuss and so as to solve topological algebra's problems by linear methods, and to get information of classifying operator algebras from a new direction.
线性保持问题研究的目的是利用线性手段探讨和解决拓扑代数的问题,从新的角度提供算子代数的整体结构和对算子代数分类的信息。
-
Besides having a some insight into theinternal structure of operator algebras,it gives a greatimpetus to the development of modern mathematics towords thenon-commutative direction,especially to the developement ofnon-commutative geometry,non-commutative algebraical topologyas well as non-commutative algebraical geometry.
除了反映算子代数自身的内在性质之外,它还对于现代数学朝着非交换的方向发展起着积极的推动作用,特别对于&非交换微分几何&,&非交换的代数拓朴&,甚至&非交换的代数几何&等非交换的数学学科的发展具有重要的影响。
-
This makes one know and understand operator algebras more deeply.
从而揭示了算子代数的固有性质以及与其上映射的联系,使人们进一步加深对算子代数的认识和理解。
-
In recent years, K-theory has played an important role in studying the Operator Algebras. C. L. Jiang, J. S. Fang and Y. Cao find the connection between the uniquely strongly irreducible decomposition up to similarity of Type I operators and the K_0-groups of the commutants of the operators in 1990s.
近年来,K理论对算子代数与算子理论的发展起到了重要的推动作用。20世纪90年代,蒋春澜,房军生,曹阳等人发现了Ⅰ型算子的强不可约分解在相似意义下的唯一性与其换位代数的K_0群之间的内在联系。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。