英语人>网络例句>operator algebras 相关的网络例句
operator algebras相关的网络例句

查询词典 operator algebras

与 operator algebras 相关的网络例句 [注:此内容来源于网络,仅供参考]

We discuss the relation between elementary maps and ring isomorphisms, andwe give a characterization of elementary maps on stndard operator algebras on Banachspaces, JSL-algebras and nest algebras. For Jordan-triple elementeary maps, we provetheir additivity on a class of ring and show a relation of them with Jordan isomorphisms. Furthermore. we describe the Jordan elementary maps on standard operator algebrasand nest algebras. We also study the semi-Jordan elementary maps on effect algebrasand the space of self adjoint operators.

研究了算子代数上的初等映射和环同构的关系,完全刻画了Banach空间上标准算子代数,JSL代数和套代数上的初等映射;讨论了Jordan-triple初等映射的可加性以及它和Jordan同构的关系,进而完全刻画了Banach空间上标准算子代数和套代数上的Jordan-triple初等映射;刻画了效应代数和自伴算子空间上的semi-Jordan初等映射。

In chapter 2, a new concept- property T〓 is introduced, it is proved that nest subalgebras of von Neumann algebras, finite width CSL and atomic CSL subalgebras of von Neumann algebras have property T〓. Some tensor product formulae of nest subalgebras and CSL subalgebras in von Neumann algebras are obtained. Tensor products of W〓-dynamical systems are studied. Finally, the essential commutant of tensor product of operator algebras is discussed.

第二章我们引入了性质T〓这一新概念,并证明了任一vonNeumann中的任何套子代数,有限宽度的可交换格子代数和原子可交换格子代数都具有性质T〓;得到了von Neumann代数中套子代数和可交换格子代数的张量积公式;研究了W*-动力系统的张量积问题;最后讨论了张量积代数的本性换位。

Ringrose began to study nest algebras in the 1960s, many people have devoted themselves to the study of non-selfadjoint and reflexive operator algebras including nest algebras, commutative subspace lattice algebras, completely distributive subspace lattice algebras and so on, and obtain a lot of beautiful achievements.

自从60年代J.Ringrose开始研究套代数以来,人们对套代数、交换子空间格代数和完全分配子空间格代数等非自伴自反算子代数进行了深入研究,并且取得了大量出色的研究成果。

Subsequently, we discuss the generalized derivable mappings at zero point on standard operator algebras and show that every generalized derivable mapping at zero point on standard operator algebras is a generalized inner derivation.

其次又对标准算子代数上的在零点广义可导的线性映射进行了讨论,证明了标准算子代数上的在零点广义可导的线性映射是广义内导子。

In order to discuss the structure of operator algebras, in recent years, a lot of schol-ars both here and abroad have focused on linear mappings of operator algebras andhave introduced more and more new methods.

为了进一步探讨算子代数的结构,近年来,国内外许多学者对算子代数上的线性映射进行了深入研究,并不断提出新的思路。

The class of non-selfadjoint operator algebras is an important domain in operator algebras reaserching.

非自伴算子代数是算子代数中一个重要的研究领域,而套代数是一类最重要的非自伴算子代数。

At present time thesemaps have become important objectors and tools in studying operator algebras. Nestalgebras is a class of most importaut non-semisimple, non-prime and non-self adjointoperator algebras. Their finite dimensional models are upper triangular matrix algebras,but the infinite dimensional models are more complex.

本文在已有成果的基础上,研究了一些类型的算子代数上的Jordan可乘映射,Jordan-triple可乘映射,Lie-skew可乘映射,初等映射,Jordan-triple初等映射,Lie导子,Jordan导子,局部导子和局部同构及其刻画问题。

The theory of operator algebras' Lie structure is one of the most wealthiest fields of operator algebras from 1950's.

算子代数的Lie结构理论是上世纪50年代以来算子代数中富有成果的领域之一。

The theory of operator algebras" Lie structure is one of the wealthiest fields of operator algebras from 1950"s.

算子代数的Lie结构理论是上世纪50年代以来算子代数中富有成果的领域之一。

Often, the characterizations of such linear preservers imply that they are algebric isomorphisms or algebric anti-isomorphisms, and therefore reveal the connection between the inherent properties of operator algebras and linear maps on itself. This makes one know and understand operator algebras more deeply.

其研究结果表明,在许多情形下,这样的线性映射是代数同态或代数反同态,从而揭示了算子代数的固有性质以及与其上线性映射的联系,使人们进一步加深对算子代数的认识和理解。

第1/3页 1 2 3 > 尾页
推荐网络例句

This one mode pays close attention to network credence foundation of the businessman very much.

这一模式非常关注商人的网络信用基础。

Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.

扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。

There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.

双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。