查询词典 nontrivial solution
- 与 nontrivial solution 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Therefore, any nontrivial progress in this field will contribute to the development of analytic number theory.
因此,在这一领域的任何实质进展都必然对解析数论的发展起到重要作用。
-
Therefore,any nontrivial progress in this field will contribute to the development of analytic number theory.
因此,在这一领域的任何实质性进展都必对解析数论的发展起到重要的推动作用。
-
Finaly, in the case of the nonlinearities being singular at 0, by utilizing the mountain-pass theorem and some other variational methods, we get the existence of nontrivial solutions of the equations under the Dirichlet boundary condition, where the operator diva(x,u is the p-Laplacian.
最后,我们通过应用山路引理等变分方法,研究当算子diva(x,▽u为p-Laplacian并且非线性项在原点有奇异性时,方程在Dirichlet边值条件下非平凡解的存在性。
-
It is to ask whether every bounded linear operator on a separable Hilbert space has a nontrivial invariant subspace and it can be reduced to the case of diagonal operator.
不变子空间问题是一个引人瞩目的公开问题,它是说在一个可分的Hilbert空间上是否每一个有界线性算子都存在非平凡的不变子空间?
-
Some basic properties of σ- LFSR over F4 are studied, such as nonlinearity, cycle structure distribution of state graph, the largest period and counting problem related. The conclusions are as follows:The coefficient ring of σ-LFSR is isomorphic to the matrix ring over F,. The cycle structure of σ- LFSR is consistent with that of the determinant of the corresponding polynomial matrix if and only if the feedback polynomial of - LFSR does not contain nontrivial factor over F2,. The counting formula of the number of σ- LFSR with inconsistent cycle structure is also showed in that part. The period of σ-LFSR with degree n is maximum if and only if the determinant of the corresponding polynomial matrix is the primitive polynomial with order 2n over F2,.
本文研究了有限域F_4上的σ-LFSR的一些基本性质,如非奇异性、状态图的圈结构的分布、最大圈的充要条件及相关的计数问题等,得到以下结论:σ-LFSR的系数环同构于F_2上的矩阵环;σ-LFSR的状态图的圈结构与对应的多项式矩阵的行列式的圈结构一致的充要条件为σ-LFSR的反馈多项式不含有非平凡的F_2上的因式,给出了圈结构不一致的σ-LFSR的计数公式; n次σ-LFSR周期达到最大,当且仅当对应多项式矩阵的行列式为F_2上的2n次本原多项式。
-
With the help of the Mountain-Pass Theorem lacking Palais-Smale compactness condition (PSc condition and by adoption of the best attained function of Sobolev embedding, the paper proves the existence of nontrivial solutions of two classes of critical biharmonic equations on boundary conditions by overcoming serial difficulties caused by loss of compactness due to Sobolev embedding.
本文借助于没有 PS 条件的翻山引理,并利用 Sobolev 嵌入的最佳达到函数,克服了由于 Sobolev 嵌入失紧性而带来的系列困难,证明了含临界增长的两类双调和方程边值问题非平凡解的存在性。
-
In chapter 5, we study necessary conditions for difference sets and we obtain the following: we proved that there are no nontrivial difference sets in dihedral group of order 4p〓, where p is a prime, d is a positive integer; we give a necessary condition for Hadamard difference sets in some group of order 4p〓, and completely solve a general case left in Dr.
在第五章中,我们研究了差集存在的必要条件。
-
Then we study that quadratic Lie colour algebra also can be decomposed to direct sum of ideas who contains no nontrivial non-degenerate idea of L . And the decomposition is unique except the order of the ideas .
然后给出了二次李color代数也可以分解为不包含非平凡的非退化的color理想的直和,而且分解除理想次序外是唯一的。
-
Lions and some other variational methods, we prove the existence of nontrivial solutions of the equations under the Dirichlet boundary condition.
ions的集中紧性原理等变分方法,得到了方程在Dirichlet边值条件下的非平凡解的存在性。
-
At last, in Section 3, we calculate the Pohozaev identity for p-harmonic equation under Navier or Dirichlet boundary condition from which we obtain the corresponding nonexistence of nontrivial solutions for p-harmonic equations with critical growth.
最后在第三节中,我们分别对带Navier边值条件和Dirichlet边值条件的p-调和方程的Pohozaev恒等式作了演算,并利用这些恒等式得到了相应的p-调和方程临界增长问题的非平凡解的非存在性结果。
- 相关中文对照歌词
- Love Solution
- Second Solution
- The Solution
- Bite Your Rhymes
- Revolution
- When I Meet God
- Solution
- The Solution
- Sex Is Not The Enemy
- There's No Solution
- 推荐网络例句
-
Salt is good, but if the salt becomes flat and tasteless, with what do you season it?
14:33 盐本是好的,盐若失了味,可用什么叫它再咸呢?
-
He reiterated that the PLA is an army of the people under the leadership of the Communist Party of China.
他重申,人民解放军是在中国共产党领导下的人民军队。
-
After five years at the Laue-Langevin Institute in Grenoble, France, Jolie turned his focus to experimental work when, in 1992, he accepted a position at the University of Fribourg in Switzerland.
他在法国格赫诺柏的劳厄–蓝吉分研究所工作了五年之后,1992年转往瑞士夫里堡大学从事实验研究。