查询词典 minimax theorem
- 与 minimax theorem 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Chapter one has introduced the background and classification of minimax theorems; Chapter two summarizes several proof method of minimax theorems, which are illustrated with examples; Chapter three has explained the development general situation of minimax theorems for a function and for two functions with chapter four respectively, and according to the classification of the theorem, has illustrated some important conclusionses in quantitative minimax theorems, topological minimax theorems and quantitative-topological minimax theorems separately.
第一章介绍了极大极小定理的背景及其分类;第二章总结了极大极小定理的几种证明方法,并举出例子进行说明;第三章和第四章分别阐述了单函数的极大极小定理和两个函数的极大极小定理的发展概况,在第三章中,按照极大极小定理的分类,分别对数量极大极小定理,拓扑极大极小定理和数量拓扑极大极小定理的一些重要结论作了介绍。
-
In this paper, we give a section theorem of Ky Fan type and its equivalent theorem in hyperconvex metric spaces, and as their applications we obtain some minimax theorems and a coincidence theorem.
赵云河 ,张惠丽文章给出了超凸度量空间中的一个Ky Fan型截口定理及其等价定理,作为它们的应用,得到了一些极大极小定理和一个重合定理。
-
Finally,as an application of the theorem,a new minimax inequality is given in general topological spaces.
最后,应用此非空交定理,在没有凸结构的一般拓扑空间中得到了一个新的极大极小不等式。
-
A section theorem, a minimax inequality and a generalized fixed point theorem where the underlying space is a product space of two topological vector space s, are given.
给出了两个拓扑向量空间的乘积空间上截口定理,极小极大不等式及一个推广的不动点定理。指出这3个形式不同的结果与Tychonov不动点定理是相互蕴含的。并且用截口定理直接证明了多值映射的一个重合定理
-
In chapter 4 , with S-KKM mapping , a new Ky Fan\'s minimax inequality is proved , the locally convex H-space with uniform structure is introduced , s-HKKM mapping is defined as the generalization of KKM mapping, with the H-convexity of Hausdorff locally convex H-space , a new fixed point theorem for the compact andclosed mapping belonging to the class s-HKKM is established ;with local intersection property of muti-function ,K-H-quasi-convexity of mapping , connectedness of set and condensing correspondences, some new vector quasi-variational inequalities are established , respectively .
第四章利用S-KKM映射,建立了新的Ky Fan极小极大不等式;定义了带有一致结构的局部凸H-空间,利用Hausdorff局部凸H-空间的H-凸性,对于属于s-HKKM中紧的闭映射建立了新的不动点定理,利用对应的局部交性质、映射的K-拟-凸性、集合的连通性以及φ-condensing对应分别建立了相应的拟向量变分不等式。
-
At first, the existence of extended form of approach to continuous selection for any set valued mapping without any continuity restriction in para-compact metric space is proved ;by the topologically separated mappings , the approximate selection theorem of sub-lower-semi-continuous mapping is established, furthermore , continuous selection problem in H-space is studied. Next, with W-correspondence, an improved variational inequality is obtained ; by the H-KKM mapping ,Ky Fan\'s minimax inequality is generalized to H-space . At last, with H-convexity instead of the linear topological structure, a new version of Browder fixed point theorem is established.Chapter 3 deals with set-valued mapping vector variational inequality and minimax problems.
第二章首先在仿紧的度量空间上对任意的集值映射建立了新的逼近连续选择定理,利用映射的拓扑可分性,在H-空间上建立了次下半连续映射的逼近连续选择定理和一个新的连续选择定理;然后利用W-对应,在H-空间上建立了广义的变分不等式;利用H-KKM映射,在H-空间上建立了广义的KyFan极小极大不等式;最后,利用H-凸性代替拓扑线性结构,在H-空间上建立了一个新型的Browder不动点定理。
-
The implications of the Minimax theorem are tested using field data.
本文利用田野数据对最小最大定理进行验证。
-
A minimax theorem generally involves three assumption conditions: space structures on sets X and Y, the continuity of the functions and the concavity and convexity of functions.
一个极大极小定理一般涉及三个假设条件:集合X和Y的空间结构,函数的连续性和函数的凹凸性。
-
Two practical methods based on eigenanalysis, minimax theorem and quadratic programming are proposed to estimate the frequency of sinusoidal signals with unknown lowpass envelopes from the single experiment data.
基于特征分析、极小极大定理和二次规划,提出了两种超分辨率窄带信号频率参数估计方法,分别称之为EMT和EQP方法。
-
By applying existence theorems of maximal elements for a family of GB-majorized mappings in a product space of G-convex spaces, some coincidence theorem, Fan-Browder type fixed point theorem and some existence theorems of solutions for a system of minimax inequalities are proved under noncompact setting of G-convex spaces.
通过应用G-凸空间的乘积空间内一族GB-优化映象的极大元的存在定理,在G-凸空间的非紧设置下证明了某些重合点定理,Fan-Browder型不动点定理和极小极大不等式组的解的存在性定理。
- 推荐网络例句
-
I didn't watch TV last night, because it .
昨晚我没有看电视,因为电视机坏了。
-
Since this year, in a lot of villages of Beijing, TV of elevator liquid crystal was removed.
今年以来,在北京的很多小区里,电梯液晶电视被撤了下来。
-
I'm running my simile to an extreme.
我比喻得过头了。