英语人>网络例句>matrices 相关的网络例句
matrices相关的网络例句

查询词典 matrices

与 matrices 相关的网络例句 [注:此内容来源于网络,仅供参考]

Thesis and mainly discuss the following problems:What we mainly discussed in the second chapter as follows:(1) S1,S2 are sets of symmetric orth-symmetric matrices;(2) S1,S2 are sets of bisymmetric matrices;(3) S1,S2 are sets of anti-symmetric orth-anti-symmetric matrices;(4) S1,S2 are sets of bi-anti-symmetric matrices;(5) S1 is the set of symmetric orth-symmetric matrices, S2 is the set of anti-symmetric orth-anti-symmetric matrices;(6) S1 is the set of bisymmetric matrices, S2 is the set of bi-anti-symmetric matrices;(7) S1 is the set of anti-symmetric orth-anti-symmetric matrices, S2 is the set of symmetric orth-symmetric matrices;(8) S1 is the set of bi-anti-symmetric matrices, S2 is the set of bisymmetricmatrices;On the base of studying the basic properties of the matrices, the expression of solutions and some numerical examples are presented.

本文第二章将主要就上述问题讨论如下几种情况: 1.S_1,S_2为对称正交对称矩阵; 2.S_1,S_2为双对称矩阵; 3.S_1,S_2为反对称正交反对称矩阵; 4.S_1,S_2为双反对称矩阵; 5.S_1为对称正交对称矩阵,S_2为反对称正交反对称矩阵; 6.S_1为双对称矩阵,S_2为双反对称矩阵; 7.S_1为反对称正交反对称矩阵,S_2为对称正交对称矩阵; 8.S_1为双反对称矩阵,S_2为双对称矩阵。

In this dissertation, we construct the Bariev model with nine kinds of boundary fields by the matrices K_± defining the boundaries. And then the Lax operator is given in the form ofmatrix, as well as the basic quantities, e.g., the R -matrix, the monodromy matrices and the transfer matrices are defined. By using the expression of the local Lax operator of the model,the action of the monodromy matrices T, T~(-1), U_ on the pseudo-vacuum state is given outin detail. Furthermore, the main fundamental commutation relations are obtained through the reflection equations, the recursive n-particle state as well as the one-particle exact solution is given and the Bethe ansatz equations are found accordingly. Finally, we list the nesting boundary K matrices, which play a crucial role for obtaining the n-particle solution and finding the Bethe ansatz equations, the eigenvalues of the transfer matrices and the energy spectrum of the system by means of the nested algebraic Bethe ansatz method.

在这篇文章中,我们利用边界K_±矩阵构造出了具有九种边界场的Bariev模型,同时给出了该模型L算子的具体矩阵表示形式,并定义了R矩阵,monodromy矩阵以及转移矩阵;接着利用L算子的矩阵形式,给出了其对应monodromy矩阵T、逆矩阵T~(-1)作用到真空态上的值,并利用Yang-Baxter关系及反射方程得到了双行monodromy矩阵U作用到真空态上的值;然后利用反射方程通过复杂的计算得到了一系列重要的基本对易关系式,并给出了模型的递推的多粒子波函数、单粒子解及Bethe ansat方程;最后给出了模型的嵌套的边界K矩阵的具体形式,从而为运用嵌套Bethe ansatz方法求解该模型的多粒子解、Bethe ansatz方程以及系统的能谱打下了很好的基础。

It consists of the next three aspects: firstly, we study Murthys' open problem whether the augmented matrix is a Q0-matrix for an arbitary square matrix A , provide an affirmable answer to this problem , obtain the augmented matrix of a sufficient matrix is a sufficient matrix and prove the Graves algorithm can be used to solve linear complementarity problem with bisymmetry Po-matrices; Secondly, we study Murthys' conjecture about positive semidefinite matrices and provide some sufficient conditions such that a matrix is a positive semidefinite matrix, we also study Pang's conjecture , obtain two conditions when R0-matrices and Q-matrices are equivelent and some properties about E0 ∩ Q-matrices; Lastly, we give a counterexample to prove Danao's conjecture that if A is a Po-matrix, A ∈ E' A ∈ P1* is false, point out some mistakes of Murthys in [20] , obtain when n = 2 or 3, A ∈ E' A ∈ P1*, i.e.

本文分为三个部分,主要研究了线性互补问题的几个相关的公开问题以及猜想:(1)研究了Murthy等在[2]中提出的公开问题,即对任意的矩阵A,其扩充矩阵是否为Q_0-矩阵,给出了肯定的回答,得到充分矩阵的扩充矩阵是充分矩阵,并讨论了Graves算法,证明了若A是双对称的P_0-矩阵时,LCP可由Graves算法给出;(2)研究了Murthy等在[6]中提出关于半正定矩阵的猜想,给出了半正定矩阵的一些充分条件,并研究了Pang~-猜想,得到了只R_0-矩阵与Q-矩阵的二个等价条件,以及E_0∩Q-矩阵的一些性质;(3)研究了Danao在[25]中提出的Danao猜想,即,若A为P_0-矩阵,则,我们给出了反例证明了此猜想当n≥4时不成立,指出了Murthy等在[20]中的一些错误,得到n=2,3时,即[25]中定理3.2中A∈P_0的条件可以去掉。

Because Conference matrices and Hadamard matrices are related to Paley matrices,in this paper we define the normalized Conference matrices and generalized normalized Hadamard matrices,and we show some special properties of them. Also we constructed a doubly even self-orthogonal code from normalized Conference matrix and a doubly even self-dual code from generalized normalized Hadamard matrix.

由于Conference矩阵,Hadamard矩阵与Paley矩阵紧密相联,本文定义了正规Confersnce矩阵和正规Hadamard矩阵,讨论了他们的一些特性,并且利用正规Conference矩阵构造了一个自正交的双偶码刷用正规Hadamard矩阵构造了一种自对偶的双偶码。

In the second part, we gave several basic and essential knowledge of inverse eigenvalue problems for Jacobi matrices: such as the properties of tridiagonal matrices, Jacobi matrices, orthogonal polynomials, Gauss quadrature formula and inverse eigenvalue problem for Jacobi matrices.

第二部分介绍了求解Jacobi矩阵反问题的基础:三对角矩阵和Jacobi矩阵,正交多项式,高斯积分方法的性质和Jacobi矩阵特征值反问题。

We call L n=1-matrices for N_0~1-matrices. Meyer introduced the concept of the Perron complement of a nonnegative and irreducible matrix in 1989 and used it to construct an algorithm for computing the stationary distribution vector for Markov chains. We extend the Perron complements of nonnegative and irreducible matrices to the Perron complements of nonpositive and irreducible matrices.

我们这里是把Perron余的概念推广到了非正不可约矩阵,显然它也具有非负矩阵相类似的性质,逆N 01矩阵又是特殊的非负矩阵,我们证明了在一定条件下,逆N 01矩阵和N 02矩阵的广义Perron余的继承性,并给出了相关的不等试:逆N 01矩阵和N 02矩阵的广义Perron余逆矩阵的不等式;逆N 01矩阵的主子阵与其逆矩阵的不等式。

In chapter one,we discuss tournament matrices that can not end in tie and theyare(0,1)-matrices,we first obtain a better lower bound for the number of regulartournament matrices,then we discuss the payoff matrix of tournament matrix,obtainsome properties of positive tournament matrices,a correlation between the spectralof a tournament matrix and its payoff matrix.We find serveal conditions that areequivalaent to a tournament matrix having 1 as its a eigenvalue.

第一章讨论不允许平局的竞赛矩阵-(0,1)-矩阵,得到了正则竞赛矩阵数目的一个下界,它改进了文献〓中已有的结果;在文献〓的基础上进一步讨论了正竞赛矩阵的性质,给出了利用已知平衡向量构造新平衡向量的方法;讨论了竞赛矩阵和它的支付矩阵的特征值之间的关系;指出了文献〓中的一个错误,回答了文献〓中的一个公开问题,得到了整数1为竞赛矩阵的特征值的充要条件及这种矩阵的谱根与得分向量之间的关系。

In this paper, we study a class of inverse M-matrices and inverse Z-matrices of tree structure, which have much value in application and theory and matrices associated with the original matrices, for exmple Schur complements, Perron complements, ect.

第二章主要研究一类树结构逆M、逆Z矩阵,图的理论和方法被应用于矩阵结构和性质的研究,图的理论和矩阵理论有着密切的关系,并且图理论用于矩阵的研究有着直观、简洁的特点,二者的研究具有互补的关系,用图的理论和方法研究矩阵一直是矩阵理论研究的一个重要方向。

In this chapter, we show that Perron complements of N_0~2-matrices are N_0~2-matrices. We also demonstrate the Perron complements of inverse N_0~1-matrices are inverse N_0~1-matrices with certain restriction.

第四章研究非严格广义双对角占优矩阵的Schur余的性质,对角占优矩阵是数值计算中经常遇到的一类矩阵,它的Schur余可应用于迭代法的构造。

In Chapter 3, we discuss the synchronization of coupled dynamical systems on condition that the external coupling matrices are n × n irreducible symmetric real matrices with zero row sum and nonnegative off-diagonal elements and internal coupling matrices are m × m asymmetric matrices.

在第三章我们讨论了耦合动力系统中,当外部耦合矩阵是n×n阶实对称不可约,行和为零且对角线以外的元素非负的矩阵,内部耦合矩阵是m×m阶非对称矩阵时耦合系统的同步问题。

第1/66页 1 2 3 4 5 6 7 8 9 ... > 尾页
相关中文对照歌词
Bianca's & Beatrice's
推荐网络例句

Salt is good, but if the salt becomes flat and tasteless, with what do you season it?

14:33 盐本是好的,盐若失了味,可用什么叫它再咸呢?

He reiterated that the PLA is an army of the people under the leadership of the Communist Party of China.

他重申,人民解放军是在中国共产党领导下的人民军队。

After five years at the Laue-Langevin Institute in Grenoble, France, Jolie turned his focus to experimental work when, in 1992, he accepted a position at the University of Fribourg in Switzerland.

他在法国格赫诺柏的劳厄–蓝吉分研究所工作了五年之后,1992年转往瑞士夫里堡大学从事实验研究。