查询词典 manifolds
- 与 manifolds 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this paper, we give explicit constructions and formulations for harmonic maps from R1,1 into classical real semisimple Lie groups by using Darboux transformation. We also discuss pluriharmonic maps from complex manifoldsinto symmetric spaces and Willmore surfaces in Sn. By converting geometric conditions satisfied by these maps into integrable systems, and using the the-ory of integrable systems, we give explicit constructions for pluriharmonic maps from complex manifolds into symmetric spaces and the Willmore surfaces in Sn respectively. Finally, we classify hypersurfaces in Sn+1 with three distinct prin-ciple curvatures and zero Mobius form using the theory of Mobius geometry. The paper consists of four chapters.
本文首先利用Darboux变换的方法给出了从Lorentz平面R~(1,1)到经典实半单Lie群的调和映照的具体构造,并给出其显式表示;其次研究了复流形到对称空间的多重调和映照及球空间S~n中Willmore曲面,将这些映照所满足的几何条件转化为可积系统,然后利用可积系统理论分别给出复流形到对称空间的多重调和映照与S~n中Willmore曲面的构造;最后利用Mōbius几何的理论给出S~(n+1)中具有三个不同主曲率且Mōbius形式为零的超曲面的分类。
-
For the Ricci flow on n-dimensional (n ≥ 4) manifolds, if the initial metric possess positive curvature operator and strong pinching conditions, then we can get the similiar results, consult the reference papers , and .
对于维数n≥4的黎曼流形,如果初始的度量的正曲率算子加上足够强的拼挤条件,也能够得到类似的结果,参见[Hu1],和。
-
Next in section 2.3,usingthe finite isolated regular representations in SO(3)character varity of 〓,weobtained a computation formula of SO(3)Donaldson invariants with degree 1 of4—manifold 〓(Theorem 2.3.1).Finally in section 2.4 wediscussed the Donaldson invariants of 4—manifolds with smoothly embedded 2—torus 〓 whose selfintersection is +1,with the help of the single irreducibleSU(2)representation of the principal 〓—bundle over a 2—torus with Eulernumber—1,we got a gluing formula of the Donaldson invariant on the 2—homology represented by 2—torus 〓(Theorem 2.4.1),it is a supplement of P.
最后在§2.4我们讨论了具有自交数为+1的嵌入环面〓的4—流形的Donladson不变量,运用环面上欧拉数为-1的圆丛的单个不可约SU(2)表示给出了Donaldson不变量在环面表示的同调类上的一个粘合公式(定理2.4.1),这一结果补充了P。
-
In chapter 2 we recall the basic facts about Riemannian manifold and some notions of the transform theory on Riemannian manifolds.
首先,利用给定流形的向量丛上联络的存在性给出流形上的不可积分布上非完整联络的存在性证明,进而证明了次黎曼联络的存在唯一性,并以此为出发点研究了次黎曼流形中仿射变换、等距变换、共形变换和射影变换下的一些不变性质,给出了相应变换下的一些不变量。
-
In this paper,focusing on the symplectic manifolds,we discuss the Seiberg-Witteninvariants,some basic construction.the existence of symplectic forms,and the existenceof Riemannian metric of positive scalar curvature.
本文主要围绕辛流形,讨论其Seiberg-WItten不变量、辛流形的一些基本构造,辛形式的存在怀及其上是否存在具有正数量曲率的黎曼度量等问题而展开的。
-
Its main goal is to explore information relating to the large-scale geometrical structure of proper metric spaces, including noncompact complete Riemannian manifolds, finitely generated groups, etc., so as to establish connections among geometry, topology and analysis of the geometric spaces, and furthermore, to solve other important problems such as the Novikov conjecture, the Baum-Connes conjucture, the Gromov-Lawson-Rosenberg conjecture on positive scalar curvature and so on.
其主要目标是通过几何空间(如非紧完备黎曼流形、有限生成群等)大尺度几何结构的信息,建立几何空间的几何、拓扑与分析之间的联系,并应用于解决其他重要问题,如Novikov猜测、Baum-Connes猜测, Gromov-Lawson-Rosenberg正标量曲率猜测等。
-
Its main goal is to explore information in the K-theory groups of the index C*-algebras, the Roe algebras C*, by using the large-scale geometrical structure of proper metric spaces, including noncompact complete Riemannian manifolds, finitely generated groups, etc., so as to establish connections among geometry, topology and analysis of the geometric spaces, and furthermore, to solve other relating problems, say, the Novikov conjecture, the Gromov-Lawson-Rosenberg conjecture on positive scalar curvature, the idempotent problem in the theory of C*-algebras.
粗几何上的指标理论是"非交换几何"领域九十年代以来发展起来的重要研究方向,它孕育于非紧流形上的指标理论,其主要目标是通过几何空间(如非紧完备黎曼流形、有限生成群等)的大尺度几何结构探索指标代数,即 Roe代数,的K-理论群的信息,从而建立几何空间的几何、拓扑与分析之间的联系,并应用于解决其他重要问题,如Novikov猜测、Gromov-Lawson-Rosenberg正标量曲率猜测、群C*-代数幂等元问题等。
-
The second variation formula of vertical energy functional for a submersion between Riemannian manifolds is calculated with a simple and direct manner.
对于黎曼流形的浸没建立了垂直能量泛函的二阶变分公式,研究强垂直调和映射的稳定性。
-
Fundamental concepts in power system differential-algebraic equations model, like singular point and multiple energy function sheets defined on constraint manifolds, are studied.
所得研究成果揭示了微分代数模型与奇异扰动模型的本质区别、奇异性与系统模型和系统负载的联系、结构保持能量函数法可能具有的内在保守性等,这对深入理解电力系统微分代数方程模型的拓扑结构、结构保持能量函数法和暂态电压稳定及其与功角稳定的关系具有一定的价值。
-
First,The properties of the spherical Bezier Curvesproposed by Ken Shoemake(Spherical Bezier curve of first kind)are listed,such asEndpoint property,Symmetry property,Invariant property under solid motion,Spherical convex hull property,etc.,and the fact that this kind of spherical BezierCurve is devoid of subdivision property is pointed out;Based on subdivision,theconcept of a new kind of spherical Bezier curve(Spherical Bezier curve of secondkind)is proposed.This kind of spherical Bezier curve is continuous differentiable.Furthermore,generalization of Bezier curve on more comprehensive manifolds isdiscussed.2Spherical Chaikin algorithm and general spherical corner-cuttingalgorithm.
首先,文中列举了Ken Shoemake提出的点点生成的球面Bezier曲线(第一类球面Bezier曲线)的性质,如端点性质、对称性质、运动不变性质、球面凸包性质等,并指出这种球面Bezier曲线没有剖分性质;基于细分,文中给出了一种新的球面Bezier曲线(第二类球面Bezier曲线)的构造方法,指出这种曲线是连续可微的;作为这些理论的应用,文中改进了Ken Shoemake提出的球面插值曲线构造方法;进一步,文中探讨了Bezier曲线在更广泛的流形上的推广方法。2球面Chaikin算法和一般的球面割角算法。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。