查询词典 manifolds
- 与 manifolds 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Then we study holomorphic vector bundles with trivial pull-back on nonprimary Hopf manifolds, of which the fundamental group is 〓, get the filtrable property and the Structure Theorem.
然后我们研究了具有Abel基本群〓的非主Hopf流形上具有平凡拉回的全纯向量丛E,得到其可滤性以及结构定理。
-
We establish an asymptotic Lipschitz homotopy invariance theorem for these K-homology groups and K-theory groups. We show that the asymptotic index maps are isomorphisms for the asymptotically scaleable spaces, which include Euclidean cones, simply connected complete Riemannian manifolds with nonpositive curvature.
我们证明了这些K-同调群和K-理论群具有渐近Lipschitz同伦不变性;对于渐近可标度的几何空间(包括欧氏锥、单连通非正曲率完备黎曼流形等),证明了渐近指标映射为同构。
-
In this paper,we determine J_~(2~k+2v)by constructing ingeniously indecomposable manifolds M,which can be generators in MO_*,and defining appropriate(Z_2)~k-action on M.
在本文中,我们通过巧妙地构造流形M,使其所在的上协边类不可分解,从而可以作为上协边环MO_*的生成元,并在M上定义适当的(Z_2)~k作用使其不动点集F具有常余维数r,决定了未定向上协边环MO_*的理想J_~(2~k+2v)。
-
The idea of coarse geometry is motivated by the heat equation approach to the index theorem on noncompact manifolds.
用粗几何的观念研究非紧空间上的指标问题,这种想法来源于指标定理的热方程方法的启发。
-
These results make it possible to analyze the control systems on infinite dimensional manifolds.
这些结果使得在无穷维流形上进行控制系统的分析成为可能。
-
The method is a com- bination of the theory of normally hyperbolic invariant manifolds and an appropriate continuation method.
我们将在第四章利用法向双曲不变流形理论和Kopell,Chicone的延拓方法,来证明2个自由度的非哈密顿扰动系统的2维共振不变环面的存在性定理。
-
By virtue of the invariant manifolds and conservative property of Hamiltonian system, we construct a"switching algorithm"to compute the periodic solution of equation (4) when the dispersion distribution σ is periodic and piecewise constant function.
4运用不变流形的分析方法和哈氏系统的守恒性质,给出了当色散分布σ为周期的分片常数情形计算方程(4)的周期轨的一个"开关算法"。
-
The work of Simgroup on invariant manifolds and dynamical systems theory in the late 1980?
在星际组不变流形和理论工作的动力系统在80年代后期?
-
We obtain these theorems on the isometry groupsof pinched Hadamard manifolds under Condition A.
特别是在三维双曲情形,条件A等是自然满足的,因此我们所得到的代数收敛性定理、极限定理和收敛性定理与平面上的经典情形一致。
-
The Laplacian on Riemannian manifolds is an essential linear operator, and it is also the main object to be studied of Geometric A...
Riemann流形上的Laplace算子是一个重要的线性算子,也是流形上几何分析研究的主要对象之一。
- 推荐网络例句
-
But we don't care about Battlegrounds.
但我们并不在乎沙场中的显露。
-
Ah! don't mention it, the butcher's shop is a horror.
啊!不用提了。提到肉,真是糟透了。
-
Tristan, I have nowhere to send this letter and no reason to believe you wish to receive it.
Tristan ,我不知道把这信寄到哪里,也不知道你是否想收到它。