查询词典 iterated logarithm
- 与 iterated logarithm 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In the first chapter , we consider the law of iterated logarithm with finite partial sum. Under certain condition ,we extend the law of iterated logarithm with finite partial sum for the Wiener process to Gaussian process ; In addition, we apply the law of iterated logarithm of Chung to the finite partial sum condition.
第一章考虑有限项部分和的重对数律,在一定条件下,将 Wiener过程下有限项部分和的重对数律推广到高斯过程中,得到高斯过程下的有限项部分和的重对数律;另外,将Chung氏重对数律进一步推广到有限项部分和的情形下。
-
This dissertation consists of five chapters, in which we discuss the complete convergence and the iterated logarithm under dependent random variables.
本文分为五章,讨论了在相依变量的情形下的完全收敛性和重对数律。
-
This paper will mainly discuss the Law of Iterated Logarithm for some kind weighted partial sum. It is an extension of "the Law of Iterated Logarithm of Kolmogorov".
本文主要讨论独立随机变量某种加权和重对数律,它是"Kolmogorov重对数律"的推广。
-
In chapter 1,by the general methods of summability methods,we establish Chover-type law of the iterated logarithm for Abel's weighted sumsand certain power series weighted sums of stable random variables.
第一章利用可和方式的典型方法,讨论了稳定随变量序列的Abel加权和及较广泛的幂级数加权和的Chover型重对数律。
-
In this paper,the law of iterated logarithm for product sums of positive as- sociated sequences with the strong stability and the strong law of large numbers for product sums of positive associated sequences with different distributions are proved.
证明了强平稳正相协列乘积和的重对数律与不同分布正相协列乘积和的强大数律,指出了部分和服从强大数律但乘积和未必服从强大数律这一事实,并讨论了定理2中一个条件的必要性。
-
Classical limit theory includes the central limit theory, the law of large numbers, and the law of iterated logarithm etc.
经典的极限理论包括中心极限定理,大数律,重对数律等等,相对于收敛性来讲,就是依分布收敛,依概率收敛,和几乎必然收敛等等。
-
Based on the results of the iterated logarithm law and the uniform modulus of continuity for Brownian motion, Orey and Taylor(1972) discussed the multifractal decomposition of one dimension white noise.
但有关多维白噪音的重分形分解问题,即多指标Wiener过程样本轨道的重分形分析性质至今仍未见有讨论,本文旨在讨论多指标Wiener过程样本轨道的重分形分析性质。
-
The Law of Iterated Logarithm for independent r.v. has been deeply discussed in all kinds of paper. We have been familiar with "the Law of Iterated Logarithm of Kolmogorov" and "the Law of Iterated Logarithm of Hartman-Wintner".
各种文献中对独立随机变量序列重对数律已有深入讨论,我们已熟知"Kolmogorov重对数律"及"Hartman-Wintner重对数律"。
-
Given some probability exponential inequalities of maximal partial sums for sequences of NQD random variables, some Laws of Logarithm and Laws of the Iterated Logarithm for Nonidentity Pairwise NQD Sequences are obtained.
通过建立两两NQD随机变量列最大部分和的概率Levy型指数不等式,给出两两NQD列的Petrov型对数律与重对数律,文献中相应结果成为其特殊情形,并得到加强。
-
Fri particular, the Wittmann-type strong law of larg numbers for independent random variables is generalized to the case of NA random variables. We also present the sufficient and necessary condition of the laws of logarithm, and we extend Teicher-type strong law of the large numbers for sequence of NA random variables. Some of the laws of iterated logarithm of Teicher-type, Egorov-type arid Wittmann-type for sequence of NA random variables are obtained. Then we investigate the rate3f ionvergcll( fbr series of NA randonl variables, we obtain soIne results fbr tl1e Iaws of theiterated logarithttl, the laws of logarithm and decreasing order fOr the tail sum.Risk itllttlysis tlleory is a sigIlifica11t part of insurance InatheInatics.
Wittmann(1985a)关于实独立随机变量列的结果,并给出了NA列强大数律成立的若干条件,特别建立了一般NA列对数律成立的充分必要条件,在二阶矩存在的条件下完整的解决了一般NA列对数律的问题,中文摘要2而已有的一些NA列对数律的结果可以由它推出,给出了NA列的Teiclier型强大数律,表明lbiChCI·(1979)给出的实独立随机变量列的强大数律可以减弱其条件等;建立厂不问分布NA列的Teicfl仪;Egorov,Petrov型有界重对数律,以及加权同分布NA列的有界重对数律,进一步推广了NA列的Kolmogory有界重对数律等,特别对NA列建立了Wittm洲型有界重对数律,而其证明方法与独立情形有很大不同,同时通过反例表明在与独立场合类似的条件下,独立列的Wittmann有界重对数律不能完美的推广到NA歹小惰形;最后研究了NA随机变量级数的收敛速度,给出了尾和下降的阶;尾和的有界重对数律,及尾和对数律成立的充要条件等,并通过反例说明 NA随机变量级数与独立随机变量级数在收敛速度方面存在的差异。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。