查询词典 interpolation polynomial
- 与 interpolation polynomial 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
-
In this paper,some problems on bivariate Hermite interpolation by polynomial are studied.The concepts of strong H-basis and Hermite interpolation along a plane algebraic curve are proposed.
1引言如所知,光滑函数方法被广泛地应用于计算机辅助几何设计,有限元及散乱数据插值与拟合(Scattered data fitting and interpolation)等领域·在应用该方法过程中,有关光滑或Hermite插值格式及其显式表达式问题的研究是至关重要的一个方面。
-
At last, we gets the coefficients of rectifying curve ploynomial through the curves fitting of three order Hermite interpolation polynomial, second order interpolation polynomial, and presents a fitting methods of small current working.
本文对高压电动机测量用电流互感器在小电流工作时电流比值误差和角度误差进行了研究,通过对引起误差的各参数的深入分析,得到误差与电流的关系,并通过三次Hermite 多项式插值法、二次多项式插值法的曲线拟合,得到曲线多项式的各系数,提出一种小电流工作时的拟合方法。
-
Polynomial smooth techniques are applied to SVM model and replace x+ by a very accurate smooth approximation that is Hermite Interpolation polynomial,thus the undifferential model is converted into a differential model.The deduction procedure of Hermite Interpolation polynomial smoothing x+ is extended.
三次Hermite插值多项式光滑的支持向量机模型采用的是一种多项式光滑技术,用三次Hermite插值多项式代替单变量函数x+,将原来不可微的模型变为可微的模型,并且给出了三次Hermite插值多项式光滑化单变量函数x+的推导过程。
-
Secondly, the performance simulation and analysis of these methods such as linear interpolation polynomial interpolation,Spline-cubic interpolation and an improved dicision-directed are performed.
首先分析了基于维纳滤波理论的二维维纳滤波估计和两个级联的一维滤波器的信道估计方法。
-
The problem of Lagrange interpolation of polynomial space in space Rs is studied,and the construction of Lagrange interpolation polynomial in space R1 and space R2 is proposed.
研究空间Rs 中多项式空间中的Lagrange插值问题。给出了R1和R2上Lagrange插值多项式的构造,同时,给出了R2上插值问题的几个例子。另外,给出了矩形网点上的Lagrange插值多项式和三角形网点上的Lagrange插值多项式。讨论了Rs空间中的Lagrange插值多项式及其余项
-
Romberg first use of the method is integral for integration, Then the results obtained by using the interpolation method were obtained Lagrange polynomial interpolation polynomial interpolation and Newton, re-use of least squares fitting of thinking obtained polynomial, the last of these different types of polynomial, identify their respective strengths and weaknesses.
首先运用Romberg积分方法对给出定积分进行积分,然后对得到的结果用插值方法,分别求出Lagrange插值多项式和Newton插值多项式,再运用最小二乘法的思想求出拟合多项式,最后对这些不同类型多项式进行比较,找出它们各自的优劣。
-
In the four section,we give a kind of method of construction method,we still give an alogrithm for computing Lagrange interpolation polynomial on sphere.and wo give a piecewise interpolation polynomial on sphere and its error estimate.
最后,给出了一种球面分片插值和它的误差估计。
-
It first uses the integrating method of Romberg , which is an improved trapezoidal integration, to solve the given definite integral,then we create Lagrange's interpolation polynomial and Newton's interpolation polynomial.
首先运用Romberg积分方法对给出定积分进行积分,然后对得到的结果用插值方法,分别求出Lagrange插值多项式和Newton插值多项式,再运用最小二乘法的思想求出拟合多项式,最后对这些不同类型多项式进行比较,找出它们各自的优劣。
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
- 推荐网络例句
-
It has been put forward that there exists single Ball point and double Ball points on the symmetrical connecting-rod curves of equilateral mechanisms.
从鲍尔点的形成原理出发,分析对称连杆曲线上鲍尔点的产生条件,提出等边机构的对称连杆曲线上有单鲍尔点和双鲍尔点。
-
The factory affiliated to the Group primarily manufactures multiple-purpose pincers, baking kits, knives, scissors, kitchenware, gardening tools and beauty care kits as well as other hardware tools, the annual production value of which reaches US$ 30 million dollars.
集团所属工厂主要生产多用钳、烤具、刀具、剪刀、厨具、花园工具、美容套等五金产品,年生产总值3000万美元,产品价廉物美、选料上乘、质量保证,深受国内外客户的青睐
-
The eˉtiology of hemospermia is complicate,but almost of hemospermia are benign.
血精的原因很,以良性病变为主。