英语人>网络例句>hermite interpolation polynomial 相关的网络例句
hermite interpolation polynomial相关的网络例句

查询词典 hermite interpolation polynomial

与 hermite interpolation polynomial 相关的网络例句 [注:此内容来源于网络,仅供参考]

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

In this paper,some problems on bivariate Hermite interpolation by polynomial are studied.The concepts of strong H-basis and Hermite interpolation along a plane algebraic curve are proposed.

1引言如所知,光滑函数方法被广泛地应用于计算机辅助几何设计,有限元及散乱数据插值与拟合(Scattered data fitting and interpolation)等领域·在应用该方法过程中,有关光滑或Hermite插值格式及其显式表达式问题的研究是至关重要的一个方面。

In theory of approximations, the classic methods of polynomial approximation for rational expression are various interpolations and operator approximations, such as Lagrange interpolation, Hermite interpolation and Bernstein polynomial approximation.

在逼近论中,用多项式逼近有理式的经典的方法是各种插值与算子逼近方法,如Lagrange插值、Hermite插值和Bernstein多项式逼近等。

The work in this thesis is based on continued fraction theory. Combining continued fractions with polynomial functions, we construct a new osculatory continued fraction interpolation—osculatory rational Hermite-like interpolation. Its representation is simpler than that of Hermite polynomial interpolation and its computation is concise since the continued fractions coefficients can be worked out by using Viscovatov algorithm.

与之相关的理论成果不断地推陈出新,本文就是在连分式理论的基础上做了相应的工作,将多项式和连分式相结合,构造了一种新的切触有理插值——类Hermite切触有理插值,新的插值方法在表示形式上比传统的切触有理插值更直观,并且通过引入Viscovatov算法,切触插值连分式的系数求解得以简化。

A fast algorithm based on Hermite interpolation polynomial for reconstructing signal from its wavelet transform maxima was proposed.

论文提出了一种基于Hermite插值多项式由二进小波变换模极大值重构信号的快速算法。

Osculatory Rational interpolation is similar to the polynomial Hermite interpolation, and for binary Osculatory rational interpolation, Similar to polynomial interpolation formulas haven't appeared from now on.

切触有理插值是类似于多项式插值中的Hermite插值的一种插值,而对于二元切触有理插值,目前还没有构造出类多项式的插值公式。

At last, we gets the coefficients of rectifying curve ploynomial through the curves fitting of three order Hermite interpolation polynomial, second order interpolation polynomial, and presents a fitting methods of small current working.

本文对高压电动机测量用电流互感器在小电流工作时电流比值误差和角度误差进行了研究,通过对引起误差的各参数的深入分析,得到误差与电流的关系,并通过三次Hermite 多项式插值法、二次多项式插值法的曲线拟合,得到曲线多项式的各系数,提出一种小电流工作时的拟合方法。

Polynomial smooth techniques are applied to SVM model and replace x+ by a very accurate smooth approximation that is Hermite Interpolation polynomial,thus the undifferential model is converted into a differential model.The deduction procedure of Hermite Interpolation polynomial smoothing x+ is extended.

三次Hermite插值多项式光滑的支持向量机模型采用的是一种多项式光滑技术,用三次Hermite插值多项式代替单变量函数x+,将原来不可微的模型变为可微的模型,并且给出了三次Hermite插值多项式光滑化单变量函数x+的推导过程。

From our results we know that the average error of the Lagrange interpolation sequence and the Hermite interpolation sequence based on the Chebyshev nodes in the 1-fold integrated Wiener space equal weakly to the average error of their corresponding optimal approximation polynomial in the 1-fold integrated Wiener space,and as a kind of information-based operation,they have simple form and their recover functions are polynomials,in the 1-fold integrated wiener space,their average error equal weakly to the corresponding minimal information radius whose permissible information operators class is function values.

通过我们的结果可以知道,基于第一类Chebyshev多项式零点的Lagrange插值算子列和Hermite插值算子列在1-重积分Wiener空间下的平均误差弱等价于相应的最佳逼近多项式在1-重积分Wiener空间下的平均误差,并且作为形式简单且恢复函数为多项式的一种信息基算法,其在1-重积分Wiener空间下的平均误差弱等价于相应的以函数值计算为可允许信息算子的最小平均信息半径。

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

第1/2页 1 2 > 尾页
推荐网络例句

On the other hand, the more important thing is because the urban housing is a kind of heterogeneity products.

另一方面,更重要的是由于城市住房是一种异质性产品。

Climate histogram is the fall that collects place measure calm value, cent serves as cross axle for a few equal interval, the area that the frequency that the value appears according to place is accumulated and becomes will be determined inside each interval, discharge the graph that rise with post, also be called histogram.

气候直方图是将所收集的降水量测定值,分为几个相等的区间作为横轴,并将各区间内所测定值依所出现的次数累积而成的面积,用柱子排起来的图形,也叫做柱状图。

You rap, you know we are not so good at rapping, huh?

你唱吧,你也知道我们并不那么擅长说唱,对吧?