英语人>网络例句>existence theorem 相关的网络例句
existence theorem相关的网络例句

查询词典 existence theorem

与 existence theorem 相关的网络例句 [注:此内容来源于网络,仅供参考]

Theorem of mean significance: The application derivative research function's nature wants directly or indirectly with the aid of Yu Zhongzhi,Specially Lagrange theorem of mean,Here is mainly from the equality proof, the inequality proof, existence asks some limits, the determination equation root and so on five aspects to carry on the discussion,so, The theorem of mean is transforms as the function in the sector research important tool, Must bring to the enough attention in the middle of ours study and the teaching.

中值定理意义:应用导数研究函数的性质都要直接或间接地借助于中值,特别是拉格朗日中值定理,这里主要是从等式的证明、不等式的证明、求一些极限、判定方程根的存在性等五个方面来进行讨论,因此,中值定理是转化为函数在区间上的研究的重要工具。在我们的学习与教学当中要引起足够的注意。

By employing the local Lipschitz condition and Picard sequence, the local existence-uniqueness of solutions of stochastic functional differential equations of Ito-type is firstly obtained. Furthermore, a continuation theorem for stochastic functional differential equations of Ito-type is given by using stochastic analysis technique and the quasi-boundedness condition. Finally, by establishing some delay differential inequalities and using properties of H_m-functions, a stochastic version of Wintner theorem and the global existence-uniqueness of solutions of stochastic functional differential equations of Ito-type are given. The results generalize the earlier publications.

首先,利用局部Lipschitz条件和Picard序列,获得了伊藤随机泛函微分方程解的局部存在唯一性;其次,利用随机分析技巧和拟有界条件,建立了伊藤随机泛函微分方程解的延拓定理;最后,通过建立一些时滞微分不等式和利用H_m-函数的特性,得到了Wintner定理的随机版本和伊藤随机泛函微分方程解的全局存在唯一性,推广了已有的一些结果。

Firstly, the existence and uniqueness of the solution for neutral stochastic functional differential equations with infinite delay under the uniformly Lipschitz condition, linear grown condition and contractive condition can be directly derived; And the moment estimate of the solution and the estimate for error between the approximate solution and the accurate solution can be both given; If the uniformly Lipschitz condition is replaced by the local Lipschitz condition, the existence and uniqueness theorem can be gained; Meanwhile, the existence and uniqueness of the global solution in the interval 0,+∞ can also be obtained; Secondly, L~p-exponential estimate of the solution for neutral stochastic functional differential equations with infinite delay can be studied; At length, the theorem of the local solution about neutral stochastic functional differential equations with infinite delay only under the local Lipschitz condition and the contractive condition can be established.

首先,在一致Lipschitz条件,线性增长条件和压缩性条件下,直接得到了具无限时滞中立型随机泛函微分方程解的存在惟一性,并给出了解的矩估计,近似解与精确解之间的误差估计;将一致Lipschitz条件替换为局部Lipschitz条件,也得到了具无限时滞中立型随机泛函微分方程解的存在惟—性,同时,也给出了在整个区间0,+∞上具无限时滞中立型随机泛函微分方程解的存在惟一性定理;其次,也讨论了具无限时滞中立型随机泛函微分方程解的L~p指数估计;最后,在局部Lipschitz条件和压缩性条件下,建立了具无限时滞中立型随机泛函微分方程局部解的存在惟一性定理。

This paper study the character and application of the solution of BSDE, the main results include: for the second kind of BSDE, the existence and uniqueness of the solution under non-Lipschitz condition, comparison theorem and stability are established , under weaker condition , the existence of the minimal and maximal solution is proved and the application in stochastic control and utility function is given; for the first kind of BSDE, under weaker condition , the existence of minimal and maximal solution .stability, comparison theorem and application to utility function are proved.

本文研究倒向随机微分方程解的性质及其应用,主要结果有:针对第二类方程,讨论了在非Lipschitz条件下倒向随机微分方程解的存在唯一性,比较定理及稳定性等,在更弱条件下,得到了倒向随机微分方程的最大解和最小解的存在性,在此基础之上,给出了在随机控制及效用函数方面的应用;针对第一类方程,同样在较弱条件下,证明了方程最大、最小解的存在性、稳定性、比较定理及其在效用函数的应用。

This paper study the character and application of the solution of BSDE, the main results include: for the second kind of BSDE, the existence and uniqueness of the solution under non-Lipschitz condition, comparison theorem and stability are established , under weaker condition , the existence of the minimal and maximal solution is proved and the application in stochastic control and utility function is given; for the first kind of BSDE, under weaker condition , the existence of minimal and maximal solution .stability, comparison theorem and application to utilityfunction are proved.

本文研究倒向随机微分方程解的性质及其应用,主要结果有:针对第二类方程,讨论了在非Lipschitz条件下倒向随机微分方程解的存在唯一性,比较定理及稳定性等,在更弱条件下,得到了倒向随机微分方程的最大解和最小解的存在性,在此基础之上,给出了在随机控制及效用函数方面的应用;针对第一类方程,同样在较弱条件下,证明了方程最大、最小解的存在性、稳定性、比较定理及其在效用函数的应用。

Firstly, the eigenvalue problem of a class of second order elliptic equation with critical potential and indefinite weights is considered. Then, using critical point theory, Trudinger-Moser inequality and the properties of the first eigenvalue, we prove the existence of a nontrivial solution for a class of nonlinear elliptic with critical potentialand indefinite weights in R~2. Secondly, we prove the existence of nontrivial solutions for a class of subcritical and critical elliptic systems with indefinite part in R~2 byusing a generalized linking theorem, Trudinger-Moser inequality and concentration-compactness principle.5. The existence of at least three weak solutions for discrete boundary value problem is established by using a three critical point theorem introduced by Ricceri.

首先,讨论了R~2中一类带不定权且含临界位势的二阶椭圆型方程的特征值问题,并借此特征值问题的第一特征值性质,利用山路引理及Trudinger-Moser不等式,证明了R~2中一类带不定权且含临界位势的非线性椭圆型方程非平凡解的存在性;其次,利用广义环绕定理,Trudinger-Moser不等式及集中列紧原理,得到了R~2上一类具有强不定部分的半线性椭圆型方程组在非线性项分别为次临界增长和临界增长情形下非平凡解的存在性。

We divide the existence of generalized solutions into three theorems becauseof the existence of a generalized supersolution we need in the proof.To ob-tain this fact,we discuss three different cases separately.WhenΩhas strictconvexity,it can be proved that the generalized supersolution of (1)(2)is theconvex-monotone hull of 〓in 〓,this is theorem 2.WhenΩdoesn't hasthe strict convexity,in theorem 3 we have to suppose there exists a generalizedsupersolution.

我们的广义解的存在性结果之所以分成三个定理陈述,主要是因为在我们的存在性证明中,一个重要的事实就是广义上解的存在性,而为了得到这个事实,我们分别讨论了三种不同的情况:在定理2中的假设〓具有严格凸性时,我们证明了问题(1)(2)的广义上解就是初边值〓的凸单调包,而在〓没有严格凸性时,我们在定理3中假定了一个广义上解的存在性。

By applying existence theorems of maximal elements for a family of GB-majorized mappings in a product space of G-convex spaces, some coincidence theorem, Fan-Browder type fixed point theorem and some existence theorems of solutions for a system of minimax inequalities are proved under noncompact setting of G-convex spaces.

通过应用G-凸空间的乘积空间内一族GB-优化映象的极大元的存在定理,在G-凸空间的非紧设置下证明了某些重合点定理,Fan-Browder型不动点定理和极小极大不等式组的解的存在性定理。

In this project, we study the theory of higher order differential equations in Banach spaces and related topics. We solve an open problem put forward by two American Mathematicians and two Italian Mathematicians concerning wave equations with generalized Weztzell boundary conditions, introduce an existence family of operators from a Banach space $Y$ to $X$ for the Cauchy problem for higher order differential equations in a Banach space $X$, establish a sufficient and necessary condition ensuring $ACP_n$ possesses an exponentially bounded existence family, as well as some basic results in a quite general setting about the existence and continuous dependence on initial data of the solutions of $ACP_n$ and $IACP_n$. We set up quite a few multiplicative and additive perturbation theorems for existence families governing a wide class of higher order differential equations, regularized cosine operator families, regularized semigroups, and solution operators of Volterra integral equations, obtain classical and strict solutions having optimal regularity for the inhomogeneous nonautonomous heat equations with generalized Wentzell boundary conditions, gain novel existence and uniqueness theorems,which extend essentially the existing results, for mild and classical solutions of nonlocal Cauchy problems for semilinear evolution equations, present a new theorem with regard to the boundary feedback stabilization of a hybrid system composed of a viscoelastic thin plate with one part of its edge clamped and the rest-free part attached to a visocelastic rigid body. Also we obtain many other research results.

在本研究中,我们对Banach空间中的高阶算子微分方程的理论以及相关理论进行了深入研究,解决了由美国和意大利的四位数学家联合提出的一个关于广义Wentzell边界条件下的波动方程适定性的公开问题,恰当地定义了Banach空间中的高阶算子微分方程Cauchy问题的算子存在族及唯一族,建立了齐次和非齐次高阶算子微分方程Cauchy问题适定性的判别定理,获得了关于高阶退化算子微分方程的算子存在族、正则余弦算子族、正则算子半群、Volterra积分方程解算子族的乘积扰动和混合扰动定理,得到了关于以依赖于时间的二阶微分算子为系数的一大类非自治热方程非齐次情形下的时变广义Wentzell动力边值问题的古典解、严格解的最大正则性结果,获得了半线性发展方程非局部Cauchy问题广义解和经典解存在唯一的判别条件,从实质上推广了现有的相关结果;得到了一部分边缘固定而另一部分附在一粘弹性刚体上的薄板构成的混合粘弹性系统的边界反馈稳定化的新稳定化定理,还建立了一系列其他研究结果。

This chapter proposes three conceptions, i.e., Kernelled quasidiferential, star-kernel and star-diferential, and establishes their operational properties. A sufficient theorem and a sufficent and necessity theorem for a quasi-kernel being a kernelled quasidiferential are proven. Both the existence of star-kernel for a quasidiferentiable function and the existence of star-differential for a direnction-ally diferentiable function are established.

在这一章里,首先给出核拟微分,星核与星微分的定义及其它们的运算性质;然后证明了拟核微分的一个充分条件定理及一个充要条件定理;最后讨(来源:A27BC论文网www.abclunwen.com)论拟可微函数星核的存在性及方向可微函数星微分的存在性以及Penot-微分与上下导数之间的关系。

第7/25页 首页 < ... 3 4 5 6 7 8 9 10 11 ... > 尾页
推荐网络例句

And Pharaoh spoke to Joseph, saying, Your father and your brothers have come to you.

47:5 法老对约瑟说,你父亲和你弟兄们到你这里来了。

Additionally, the approximate flattening of surface strip using lines linking midpoints on perpendicular lines between geodesic curves and the unconditional extreme value method are discussed.

提出了用测地线方程、曲面上两点间短程线来计算膜结构曲面测地线的方法,同时,采用测地线间垂线的中点连线和用无约束极值法进行空间条状曲面近似展开的分析。

Hey Big Raven, The individual lies dont matter anymore - its ALL a tissue of lies in support of...

嘿大乌鸦,个别谎言的事不要再-其所有的组织的谎言,在支持。