查询词典 existence theorem
- 与 existence theorem 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
By employing the local Lipschitz condition and Picard sequence, the local existence-uniqueness of solutions of stochastic functional differential equations of Ito-type is firstly obtained. Furthermore, a continuation theorem for stochastic functional differential equations of Ito-type is given by using stochastic analysis technique and the quasi-boundedness condition. Finally, by establishing some delay differential inequalities and using properties of H_m-functions, a stochastic version of Wintner theorem and the global existence-uniqueness of solutions of stochastic functional differential equations of Ito-type are given. The results generalize the earlier publications.
首先,利用局部Lipschitz条件和Picard序列,获得了伊藤随机泛函微分方程解的局部存在唯一性;其次,利用随机分析技巧和拟有界条件,建立了伊藤随机泛函微分方程解的延拓定理;最后,通过建立一些时滞微分不等式和利用H_m-函数的特性,得到了Wintner定理的随机版本和伊藤随机泛函微分方程解的全局存在唯一性,推广了已有的一些结果。
-
The existence theorem of generalized weak efficient solutions with respect to variable, cone for a linear G〓teaux differentiable mapping is proved with set valued mapping fixed-point theorem and the relation between a vector optimization and a variational inequality problem. The existence of weak efficient solutions for multi-objective convex vector optimization is characterized.
建立映射在线性G〓teaux可微条件下关于可变锥的广义弱有效解的存在性及多目标凸向量优化问题在G〓teaux可微条件下弱有效解的特征,利用集值映射不动点定理及向量优化与变分不等式的关系证明线性G〓teaux可微锥凸映射关于可变锥的广义弱有效解的存在性定理。
-
We divide the existence of generalized solutions into three theorems becauseof the existence of a generalized supersolution we need in the proof.To ob-tain this fact,we discuss three different cases separately.WhenΩhas strictconvexity,it can be proved that the generalized supersolution of (1)(2)is theconvex-monotone hull of 〓in 〓,this is theorem 2.WhenΩdoesn't hasthe strict convexity,in theorem 3 we have to suppose there exists a generalizedsupersolution.
我们的广义解的存在性结果之所以分成三个定理陈述,主要是因为在我们的存在性证明中,一个重要的事实就是广义上解的存在性,而为了得到这个事实,我们分别讨论了三种不同的情况:在定理2中的假设〓具有严格凸性时,我们证明了问题(1)(2)的广义上解就是初边值〓的凸单调包,而在〓没有严格凸性时,我们在定理3中假定了一个广义上解的存在性。
-
By applying existence theorems of maximal elements for a family of GB-majorized mappings in a product space of G-convex spaces, some coincidence theorem, Fan-Browder type fixed point theorem and some existence theorems of solutions for a system of minimax inequalities are proved under noncompact setting of G-convex spaces.
通过应用G-凸空间的乘积空间内一族GB-优化映象的极大元的存在定理,在G-凸空间的非紧设置下证明了某些重合点定理,Fan-Browder型不动点定理和极小极大不等式组的解的存在性定理。
-
This chapter proposes three conceptions, i.e., Kernelled quasidiferential, star-kernel and star-diferential, and establishes their operational properties. A sufficient theorem and a sufficent and necessity theorem for a quasi-kernel being a kernelled quasidiferential are proven. Both the existence of star-kernel for a quasidiferentiable function and the existence of star-differential for a direnction-ally diferentiable function are established.
在这一章里,首先给出核拟微分,星核与星微分的定义及其它们的运算性质;然后证明了拟核微分的一个充分条件定理及一个充要条件定理;最后讨(来源:A27BC论文网www.abclunwen.com)论拟可微函数星核的存在性及方向可微函数星微分的存在性以及Penot-微分与上下导数之间的关系。
-
As for the existence of positive solutions, the cone theory and the fixed point index of condensing mapping are employed, and the results of the existence of positive solutions are obtained in the case of superlinear and sublinear. The conclusions extend and improve the existence theorem which Lou Ben-dong extablished in 1996 about the question of Sturm-Liouville of Banach spaces.
三、对于正解存在性问题,我们应用凝聚映射的不动点指数理论,分别在超线性与次线性情形下进行讨论,获得了一些正解存在的结果,主要结果推广和改进了1996年Lou Ben-dong对Banach空间Sturm-Liouville问题所建立的存在性定理。
-
In chapter two, under non-Lipschitz condition, the existence and uniqueness of the solution of the second kind of BSDE is researched, based on it, the stability of the solution is proved; In chapter three, under non-Lipschitz condition, the comparison theorem of the solution of the second kind of BSDE is proved and using the monotone iterative technique , the existence of minimal and maximal solution is constructively proved; in chapter four, on the base of above results, we get some results of the second kind of BSDE which partly decouple with SDE, which include that the solution of the BSDE is continuous in the initial value of SDE and the application to optimal control and dynamic programming. At the end of this section, the character of the corresponding utility function has been discussed, e.g monotonicity, concavity and risk aversion; in chapter 5, for the first land of BSDE ,using the monotone iterative technique , the existence of minimal and maximal solution is proved and other characters and applications to utility function are studied.
首先,第二章在非Lipschitz条件下,研究了第二类方程的解的存在唯一性问题,在此基础上,又证明了解的稳定性;第三章在非Lipschitz条件下,证明了第二类BSDE解的比较定理,并在此基础上,利用单调迭代的方法,构造性证明了最大、最小解的存在性;第四章在以上的一些理论基础之上,得到了相应的与第二类倒向随机微分方程耦合的正倒向随机微分方程系统的一些结果,主要包括倒向随机微分方程的解关于正向随机微分方程的初值是具有连续性的,得到了最优控制和动态规划的一些结果,在这一章的最后还讨论了相应的效用函数的性质,如,效用函数的单调性、凹性以及风险规避性等;第五章,针对第一类倒向随机微分方程,运用单调迭代方法,证明了最大和最小解的存在性,并研究了解的其它性质及在效用函数上的应用。
-
By using these convergence theorems,it presents the Silverman-To-eplitz regular theorem and Samaratunga-Sember theorem on the Abelian topologicalgroups,the Vitali-Hahn-Saks theorem on algebras and the weak sequentially completenesstheorem of 〓-dual spaces of sequence spaces,etc.
这是抽象分析中的两个基本定理。作为应用,给出了Abelian拓扑群上的Silverman-Toeplitz正则性定理、Samaratunga-Sember定理、代数上的Vitali-Hahn-Saks定理,以及序列空间的〓对偶空间之弱序列完备性定理等。
-
Theorem 1 constructs a set of universal measure zero using continuous extension; Theorem 2 verifies absolutely continuous function being of good property under some condition; Theorem 3 reveals some relation between real function and meager.
定理1 主要运用了连续延拓构造了一个泛测度零集;定理2 证明绝对连续函数在一定条件下具有良好的性质;定理3 揭示了实函数与第一纲集的某种关系。
-
Main work follows:(1) In the first part of this paper, a historical development of the number theory before Gauss is reviewed.Based on the systematic analysis of Gauss"s work in science and mathematics, inquiry into the mathematical background that Disquisitiones Arithmeticae appeals and Gauss"s congruent theory;(2) The development process of Fermat"s little theorem and its important function in the compositeness test is elaborated through original literature.we think that the first three section of Disquisitiones Arithmeticae is a summary and development for ancestors" work about Fermat"s little theorem,show that Fermat"s little theorem played an important role in the elementary number theory;(3) With the two main sources of the quadratic reciprocity law, investigating Fermat,Euler,Lagrange,Legendre, until the related work of Gauss,the way to realize the laws huge push to the development of algebraic number theory in 19 centuries.
本文主要做了以下工作:(1)首先回顾了高斯之前的数论研究状况,在系统分析高斯的科学与数学成就的基础上,探讨了《算术研究》出现的数学背景和高斯的同余理论;(2)通过对原始文献的系统解读,深入分析了费马小定理发现发展的历程以及在素性检验中的重要作用,指出《算术研究》前三节是高斯在总结并发展了前人对该定理研究的基础上形成的,并揭示了费马小定理在初等数论定理证明中的核心地位;(3)以二次互反律的两个主要来源为线索,详细考察了费马,欧拉,拉格朗目,勒让德,直到高斯的相关工作,揭示了该定律对十九世纪数论发展的巨大推动作用。
- 相关中文对照歌词
- Gravitational Constant: G = 6.67x10-8 cm-3gm-1sec-2
- Common Existence
- Missing Existence
- Junior
- One Is The Magic Number
- Stat-60
- The Definition
- Burning Down The Nicotine Armoire Pt. 2
- A Trick Of The Tail
- Goodbye
- 推荐网络例句
-
But this is impossible, as long as it is engaging in a market economy, there are risks in any operation.
但是,这是不可能的,只要是搞市场经济,是有风险的任何行动。
-
We're on the same wavelength.
我们是同道中人。
-
The temperature is usually between 300 and 675 degrees Celsius.
温度通常在摄氏300度到675度之间。