英语人>网络例句>ergodic transformation 相关的网络例句
ergodic transformation相关的网络例句

查询词典 ergodic transformation

与 ergodic transformation 相关的网络例句 [注:此内容来源于网络,仅供参考]

In the third chapter,we will discuss the properties of Haar measure,and then wewill prove the Ergodic theorem;at last,we follow Dale,Baaj and Skandalis to give twoexistence theorems of Haar measure,which we proved in different language.

在第三章我们讨论了Haar测度的性质,证明了〓双代数中的平均遍历定理,并且用算子的观点叙述证明了Dale和Baaj、Skandalis分别给出的两个Haar测度存在定理。

The most plausible operatorial generalization of result of preceding paragraph is known as the "mean ergodic theorem for unitary operators."

前段结果可以推广到算子去,其中最近情近理的推广是"单算子的平均遍历定理"。

We proved the nonlinear ergodic theorem for semitopological semigroups of asymptotically nonexpansive mappings in the uniformly convex Banach space with the Frechet differentiable norm. We also point out that some key conditions in [23] [24] are unnecessary.

本文第一章主要将文[23][24]中的结论推广到殆轨道的情形,这不仅回答了Lau-Takahashi[24]中的问题,而且指出了文[23][24]中的某些关键条件是不必要的。

Li 101 proved the nonlinear ergodic theorem for semitopological semigroups of Lipschitzian mappings in the uniformly convex Banach space with the Frechet differentiable norm without using the concept of invariant mean and submean. In Chapter 1, we extend the results in [23 [24] to the case of almost-orbit.

Li[10]避开了不变平均及不变子平均的概念,在具Frechet可微范数的一致凸Banach空间中,给出了一般拓扑半群上渐近非扩张半群的遍历压缩定理。

Moreover, when X is a Hilbert space, Miaxoguchi and Takahashi provided the ergodic retraction theorem for general semigroups of asymptotically nonexpansive mapping by using the concept of invariant submean.

进一步,当X是Hilbert空间时,Miaxoguchi及Takahashi引入了不变子平均的概念,在一般拓扑半群上给出了渐近非扩张半群的遍历压缩定理。

When G is not a commutative semitopological semigroup, Lau and Takahashi proved the ergodic theorem for right reversible semigroups of nonexpansive mappings by using the methods of invariant means.

而当G非交换时,Lau和Takahashi利用不变平均技巧,在假定G是右可逆,X具一致Frechet可微范数及RUC存在不变平均等条件下,给出了非扩张半群的遍历压缩定理。

Under the locally uniform τ-Opial condition, using product topological net, a new convergence condition of X with locally uniform τ-Opial condition is obtained, and give the ergodic theorem and τ-convergence theorem of the almost-orbits for asympotically nonexpansive typesemigroups in Banach space X are given.

首先给出了局部一致τ-Opial条件的概念,运用乘积拓扑网技巧得到了具有局部一致τ-Opial条件下空间X的新的收敛条件。

Ruck, Hirano and Reich extended Baillon抯 theorem to a uniformly convex Banach space with a Frechet differentiable norm. Hirano-Kido-Takahashi, Oka, Park and Jenong proved the ergodic theorem for commutative semigroups of nonexpansive mappings and asymptotically nonexpansive mappings in the uniformly convex I3anach space with the Frechet differentiable nonn.

aillon的定理被Bruck,Hirano及Reich推广到具Frechet可微范数的一致凸Banach空间中,而当G是一般交换拓扑半群时,Hirano-Kido-Takahashi,Oka,Park及Jeong分别给出了具Frechet可微范数的一致凸Banach空间中非扩张半群及渐近非扩张半群的遍历压缩定理和遍历收敛定理。

In chapter 2, some preliminary kownledges in topologically dynamical system and ergodic theory, which will be used in this paper, are reviewed.

在第二章中,我们介绍了本文涉及到的一些拓扑动力系统和遍历理论的预备知识。

In the first chapter we introduce the basic notions and results of topological dynamics, including some basic knowledge of ergodic theory which will be used in context.

在第一章中,我们简要的介绍了本文涉及到的拓扑动力系统与遍历理论的一些基本概念与结论。

第13/100页 首页 < ... 9 10 11 12 13 14 15 16 17 ... > 尾页
相关中文对照歌词
Beautiful Transformation
Lawnmower To Music
Transformation
25th Floor / High On Rebellion
Sporadic Movement
At Transformation
Of Sephirotic Transformation And Carnality
∆bsolution
Purification By Fire
The Evolution
推荐网络例句

The dissecting of samples in group2 were difficult. The root of pulmonary artery and ascending aorta failed to be unfolded because fibrous tissue was tough, right and left fibrous trigone were too firm to be solved by hand. Cardiac muscle fibers couldn't be stripped along myofibrillar trajectory since they were prone to break because of their friability.

组2的心脏解剖困难,表现为纤维组织坚韧,游离肺动脉非常困难;徒手无法松解左、右纤维三角,肺动脉和主动脉根部的游离非常困难;心肌纤维坚硬、质脆,解剖时容易断离成碎块,无法沿纤维走行方向剥离。

We have battled against the odds in a province that has become increasingly violent.

我们对在一个争夺日益激烈省的可能性。

MILAN - The team has left for the States at 10.15am CET from Terminal 1, Milan Malpensa airport. The Rossoneri will land in New York at 12.50am local time (6.50pm CET), after a nine-hour flight.

米兰—球队在上午10:15从米兰马尔朋萨机场第一登机口登机,出发前往美国,预计于纽约时间上午12:50降落(意大利时间下午6:50),飞行时间大约9个小时。