查询词典 energy unit
- 与 energy unit 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
PART 1 UNIT 1 B Electrical and Electronic Engineering Basics A Electrical Networks ———————————— 3 Three-phase Circuits A The Operational Amplifier ——————————— 5 UNIT 2 B Transistors A Logical Variables and Flip-flop —————————— 8 UNIT 3 B Binary Number System A Power Semiconductor Devices —————————— 11 UNIT 4 B Power Electronic Converters A Types of DC Motors —————————————15 UNIT 5 B Closed-loop Control of DC Drivers A AC Machines ———————————————19 UNIT 6 B Induction Motor Drive A Electric Power System ————————————22 UNIT 7 B PART 2 UNIT 1 B Power System Automation Control Theory A The World of Control ————————————27 —————29 The Transfer Function and the Laplace Transformation UNIT 2 B A Stability and the Time Response ————————— 30 Steady State————————————————— 31 A The Root Locus ————————————— 32 ————— 33 UNIT 3 B The Frequency Response Methods: Nyquist Diagrams UNIT 4 A The Frequency Response Methods: Bode Piots ————— 34 B Nonlinear Control System 37 UNIT 5 A Introduction to Modern Control Theory B State Equations 40 38 UNIT 6 A Controllability, Observability, and Stability B Optimum Control Systems UNIT 7 A Conventional and Intelligent Control B Artificial Neural Network Computer Control Technology A Computer Structure and Function 42 B Fundamentals of Computer and Networks 43 44 PART 3 UNIT 1 UNIT 2 A Interfaces to External Signals and Devices B The Applications of Computers 46 UNIT 3 A PLC Overview B PACs for Industrial Control, the Future of Control UNIT 4 A Fundamentals of Single-chip Microcomputer 49 B Understanding DSP and Its Uses 1 UNIT 5 A A First Look at Embedded Systems B Embedded Systems Design Process Control A A Process Control System B 50 PART 4 UNIT 1 Fundamentals of Process Control 52 53 UNIT 2 A Sensors and Transmitters B Final Control Elements and Controllers UNIT 3 A P Controllers and PI Controllers B PID Controllers and Other Controllers UNIT 4 A Indicating Instruments B Control Panels Control Based on Network and Information A Automation Networking Application Areas B Evolution of Control System Architecture PART 5 UNIT 1 UNIT 2 A Fundamental Issues in Networked Control Systems B Stability of NCSs with Network-induced Delay UNIT 3 A Fundamentals of the Database System B Virtual Manufacturing—A Growing Trend in Automation UNIT 4 A Concepts of Computer Integrated Manufacturing B Enterprise Resources Planning and Beyond Synthetic Applications of Automatic Technology A Recent Advances and Future Trends in Electrical Machine Drivers B System Evolution in Intelligent Buildings PART 6 UNIT 1 UNIT 2 A Industrial Robot B A General Introduction to Pattern Recognition UNIT 3 A Renewable Energy B Electric Vehicles UNIT 1 A
电路 2 电路或电网络由以某种方式连接的电阻器,电感器和电容器等元件组成。如果网络不包含能源,如电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性。就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为: u=iR (1-1A-1)式中 u=电压,伏特;i =电流,安培;R =电阻,欧姆。纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的变化率。因此可得到:U=Ldi/dt 式中 di/dt =电流变化率,安培/秒; L =感应系数,享利。电容两端建立的电压正比于电容两极板上积累的电荷 q 。因为电荷的积累可表示为电荷增量 dq 的和或积分,因此得到的等式为 u=,式中电容量 C 是与电压和电荷相关的比例常数。由定义可知,电流等于电荷随时间的变化率,可表示为 i = dq/dt。因此电荷增量 dq 等于电流乘以相应的时间增量,或 dq = i dt,那么等式(1-1A-3)可写为式中 C =电容量,法拉。
-
PART 1 Electrical and Electronic Engineering Basics UNIT 1 A Electrical Networks B Three-phase Circuits UNIT 2 A The Operational Amplifier ——————————— 5 B Transistors UNIT 3 A Logical Variables and Flip-flop —————————— 8 ———————————— 3 B Binary Number System UNIT 4 A Power Semiconductor Devices —————————— 11 B Power Electronic Converters UNIT 5 A Types of DC Motors —————————————15 B Closed-loop Control of DC Drivers UNIT 6 A AC Machines ———————————————19 B Induction Motor Drive UNIT 7 A Electric Power System ————————————22 B Power System Automation PART 2 Control Theory UNIT 1 A The World of Control ————————————27 B The Transfer Function and the Laplace Transformation UNIT 2 A B —————29 Stability and the Time Response ————————— 30 ————————————— 32 Steady State————————————————— 31 UNIT 3 A The Root Locus B The Frequency Response Methods: Nyquist Diagrams ————— 33 UNIT 4 A The Frequency Response Methods: Bode Piots ————— 34 B Nonlinear Control System 37 UNIT 5 A Introduction to Modern Control Theory B UNIT 6 State Equations 40 38 A Controllability, Observability, and Stability B Optimum Control Systems UNIT 7 A Conventional and Intelligent Control B Artificial Neural Network PART 3 UNIT 1 Computer Control Technology A Computer Structure and Function B 42 43 44 Fundamentals of Computer and Networks UNIT 2 A Interfaces to External Signals and Devices B The Applications of Computers 46 UNIT 3 A PLC Overview B PACs for Industrial Control, the Future of Control 1 UNIT 4 A Fundamentals of Single-chip Microcomputer B Understanding DSP and Its Uses 49 UNIT 5 A A First Look at Embedded Systems B Embedded Systems Design PART 4 UNIT 1 Process Control A A Process Control System 50 B Fundamentals of Process Control 53 52 UNIT 2 A Sensors and Transmitters B Final Control Elements and Controllers UNIT 3 A P Controllers and PI Controllers B PID Controllers and Other Controllers UNIT 4 A Indicating Instruments B Control Panels PART 5 UNIT 1 Control Based on Network and Information A Automation Networking Application Areas B Evolution of Control System Architecture UNIT 2 A Fundamental Issues in Networked Control Systems B Stability of NCSs with Network-induced Delay UNIT 3 A Fundamentals of the Database System B Virtual Manufacturing—A Growing Trend in Automation UNIT 4 A Concepts of Computer Integrated Manufacturing B Enterprise Resources Planning and Beyond PART 6 UNIT 1 Synthetic Applications of Automatic Technology A Recent Advances and Future Trends in Electrical Machine Drivers B System Evolution in Intelligent Buildings UNIT 2 A Industrial Robot B A General Introduction to Pattern Recognition UNIT 3 A Renewable Energy B Electric Vehicles 2 UNIT 1 A
电路 电路或电网络由以某种方式连接的电阻器,电感器和电容器等元件组成。如果网络不包含能源,如电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性。就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为: u=iR (1-1A-1)式中 u=电压,伏特;i =电流,安培;R =电阻,欧姆。纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的变化率。因此可得到:U=Ldi/dt 式中 di/dt =电流变化率,安培/秒; L =感应系数,享利。电容两端建立的电压正比于电容两极板上积累的电荷 q 。因为电荷的积累可表示为电荷增量 dq 的和或积分,因此得到的等式为 u=,式中电容量 C 是与电压和电荷相关的比例常数。由定义可知,电流等于电荷随时间的变化率,可表示为 i = dq/dt。因此电荷增量 dq 等于电流乘以相应的时间增量,或 dq = i dt,那么等式(1-1A-3)可写为式中 C =电容量,法拉。
-
Muzak can relax us and give us extra energy.
Unit 1 背景音乐能使人放松,补充能量。
-
It's a complete little self-contained energy unit on this farm.
这都是。。。是这个农场上的一个完整的能源系统。
-
The geology research of carbonate reservoirs in Ordovician of Tahe oilfield showed that many large dissolved vugs and fractures were developed. The spread of the reservoir take on a very heterogeneous state. And the typical fractured-vuggy reservoirs was formed. According to the combination of the various spaces, the formation was divided into vuggy formation, fractured-vuggy formation and fractured formation. The research showed that development of the vug is relevant to the its position on the structure, the fractures, the water surface and the weathering surface. Multi-phase charge and recharge of the oil in the reservoirs resulted in the complexity of the fluid distribution. So the"Bottle Model"was brought forward to explain the movement of the water-oil contact. The special storage space and the complex fluid distribution lead to the unstability of the production and the complexity of the water cut. In order to explain the characteristic of the fracture-vug unit was brought forward and the basic principle and method of the partition of the fracture-vug unit was formed. The classification and evaluation of the units were performed according the reserve and energy. Based on the research of geology characteristic and the fluid flow in the reservoir the comprehensive numerical simulation plan of the fractured-vuggy reservoirs were established. Through the selection of the simulation unit, fluid flow type and parameter equivalent the triple media reservoir simulation model was established. Considering the practical application the model was resolved by the DKR decomposition conjugate grads method. Based on the fine reservoir description of Dsitrict IV of the Tahe oilfield the various space type were classified and combined together. The geology model of Unit S48 was constructed. Two typical single well model was established according to the geology and the dynamic phenomena. Finally the single well model and the Unit S48 were simulated by the triple media reservoir simulator. Via the local grid refinement and coarsening in the simulation good matchs were gained. Based on the results of the simulation the reserve distribution, percent of reserve produced in various space and the natural energy were analyzed. The fluid was storaged in the fractures and vugs mostly and more than 90% the produced oil came from the systems. The energy belonged to the active one. The results of simulation accorded with the fact and showed the validity and practicability the research and the simulator.
塔河油田奥陶系碳酸盐岩油藏的地质研究表明,其储层中发育着很多大型的溶蚀洞、缝,储层的平面展布呈现出极度的非均质性,形成了典型的缝洞型碳酸盐岩油藏,根据各种孔隙介质在储层中的组合,将储层分为了溶洞型、裂缝-溶洞型和裂缝型三类;研究表明溶洞储层的发育和构造位置、裂缝的发育、潜水面和风化面的位置等因素有关;多期充注的油气成藏模式导致了流体复杂的赋存状态,由此提出了所谓的"瓶子模型",解释生产过程中油水界面的变化;特殊的储集空间类型和流体分布特征导致油田在开发过程中表现出很大的不确定性和含水变化的复杂性,为了合理的解释油气田开发过程中的动态特征,提出了"缝洞单元"的概念,并制定了"缝洞单元"纵横向划分的基本原则和依据及划分方法,并对"缝洞单元"进行了分类和评价;基于地质特征和流体在其中流动规律的研究,提出了缝洞型碳酸盐岩油藏的数值模拟综合解决方案,通过模拟单元的选择、流动类型和参数的等效,建立了三重介质油藏三维三相数值模拟模型,采用不完全LU分解预处理共轭梯度法进行了求解;在塔河油田4区精细油藏描述的基础上,将各种类型的孔隙空间进行了归类组合,建立了S48单元的地质模型;通过对油井生产动态进行分析研究,建立了两类和油井地质、生产动态相对应的单井模型;最后应用三重介质油藏数值模拟软件对单井模型和S48单元进行了数值模拟,通过局部加密和粗化等技术模拟流体流动规律,取得了很好的拟合效果;结合数值模拟结果,分析了各种介质中的储量分布、储量产出的百分比以及地层的能量,认为塔河油田缝洞型油藏中流体绝大多数储集于缝洞系统之中,所产出流体90%以上也来自于缝洞系统,其底水能量属于较充足的类型;模拟结果和油田实际情况符合较好,说明了地质研究和油藏数值模拟研究的正确性。
-
The geology research of carbonate reservoirs in Ordovician of Tahe oilfield showed that many large dissolved vugs and fractures were developed. The spread of the reservoir take on a very heterogeneous state. And the typical fractured-vuggy reservoirs was formed. According to the combination of the various spaces, the formation was divided into vuggy formation, fractured-vuggy formation and fractured formation. The research showed that development of the vug is relevant to the its position on the structure, the fractures, the water surface and the weathering surface. Multi-phase charge and recharge of the oil in the reservoirs resulted in the complexity of the fluid distribution. So the"Bottle Model"was brought forward to explain the movement of the water-oil contact. The special storage space and the complex fluid distribution lead to the unstability of the production and the complexity of the water cut. In order to explain the characteristic of the fracture-vug unit was brought forward and the basic principle and method of the partition of the fracture-vug unit was formed. The classification and evaluation of the units were performed according the reserve and energy. Based on the research of geology characteristic and the fluid flow in the reservoir the comprehensive numerical simulation plan of the fractured-vuggy reservoirs were established. Through the selection of the simulation unit, fluid flow type and parameter equivalent the triple media reservoir simulation model was established. Considering the practical application the model was resolved by the DKR decomposition conjugate grads method. Based on the fine reservoir description of Dsitrict IV of the Tahe oilfield the various space type were classified and combined together. The geology model of Unit S48 was constructed. Two typical single well model was established according to the geology and the dynamic phenomena. Finally the single well model and the Unit S48 were simulated by the triple media reservoir simulator. Via the local grid refinement and coarsening in the simulation good matchs were gained. Based on the results of the simulation the reserve distribution, percent of reserve produced in various space and the natural energy were analyzed. The fluid was storaged in the fractures and vugs mostly and more than 90% the produced oil came from the systems. The energy belonged to the active one. The results of simulation accorded with the fact and showed the validity and practicability the research and the simulator.
塔河油田奥陶系碳酸盐岩油藏的地质研究表明,其储层中发育着很多大型的溶蚀洞、缝,储层的平面展布呈现出极度的非均质性,形成了典型的缝洞型碳酸盐岩油藏,根据各种孔隙介质在储层中的组合,将储层分为了溶洞型、裂缝-溶洞型和裂缝型三类;研究表明溶洞储层的发育和构造位置、裂缝的发育、潜水面和风化面的位置等因素有关;多期充注的油气成藏模式导致了流体复杂的赋存状态,由此提出了所谓的&瓶子模型&,解释生产过程中油水界面的变化;特殊的储集空间类型和流体分布特征导致油田在开发过程中表现出很大的不确定性和含水变化的复杂性,为了合理的解释油气田开发过程中的动态特征,提出了&缝洞单元&的概念,并制定了&缝洞单元&纵横向划分的基本原则和依据及划分方法,并对&缝洞单元&进行了分类和评价;基于地质特征和流体在其中流动规律的研究,提出了缝洞型碳酸盐岩油藏的数值模拟综合解决方案,通过模拟单元的选择、流动类型和参数的等效,建立了三重介质油藏三维三相数值模拟模型,采用不完全LU分解预处理共轭梯度法进行了求解;在塔河油田4区精细油藏描述的基础上,将各种类型的孔隙空间进行了归类组合,建立了S48单元的地质模型;通过对油井生产动态进行分析研究,建立了两类和油井地质、生产动态相对应的单井模型;最后应用三重介质油藏数值模拟软件对单井模型和S48单元进行了数值模拟,通过局部加密和粗化等技术模拟流体流动规律,取得了很好的拟合效果;结合数值模拟结果,分析了各种介质中的储量分布、储量产出的百分比以及地层的能量,认为塔河油田缝洞型油藏中流体绝大多数储集于缝洞系统之中,所产出流体90%以上也来自于缝洞系统,其底水能量属于较充足的类型;模拟结果和油田实际情况符合较好,说明了地质研究和油藏数值模拟研究的正确性。
-
In the simulation model, the cellular automata model is applied to describe the tunnels system, and a cellular is used to represent an energy unit of flame, which is eradiated from the fire-point and contains such status parameters as temperature, velocity, smog density, density of poisonous gases.
在该方法中,用元胞自动机模型描述地下矿巷道网络系统,用元胞来描述火焰蔓延能量单元,该单元用火焰温度、蔓延速度、烟雾浓度和有毒气体浓度等状态参数来描述。
-
In the simulation model, the cellular automata model was applied to describe the tunnel network system, a methane gas cell was used to represent an energy unit of methane gas which was eradiated from walls of working spaces, mined coal piles, surrounding rocks and excavations, a grid cell was used to represent a tunnel grid and its states, these grid cells contain such state parameters as velocity and quantity of methane gas.
在该方法中,用元胞自动机模型描述地下矿巷道网络系统,用瓦斯元胞来描述从工作面煤壁、采落的煤堆、围岩和采空区渗出的瓦斯能量单元;用格子元胞描述巷道格子及其状态,这些格子元胞均用瓦斯运移速度和瓦斯含量等状态参数来描述。
-
CSR, which plans to split in two by demerging its sugar and renewable energy unit from its building products operations, dismissed the approach, saying Bright Food had not made an offer but simply requested talks to develop a bid proposal.
西斯尔计划将公司一分为二,将糖和可再生能源子公司从建筑产品业务中分拆出来。该公司反驳了光明的说法,称后者并未提出报价,只是请求就提交收购协议展开对话。
-
The wind energy unit shall be safely in operation at the temperature of -15℃~+40℃.
风电机组在-15℃~+40℃环境温度下安全运行。
- 推荐网络例句
-
Neither the killing of Mr Zarqawi nor any breakthrough on the political front will stop the insurgency and the fratricidal murders in their tracks.
在对危险的南部地区访问时,他斥责什叶派民兵领导人对中央集权的挑衅行为。
-
In fact,I've got him on the satellite mobile right now.
实际上 我们已接通卫星可视电话了
-
The enrich the peopling of Deng Xiaoping of century great person thought, it is the main component in system of theory of Deng Xiaoping economy, it is a when our country economy builds basic task important facet.
世纪伟人邓小平的富民思想,是邓小平经济理论体系中的重要组成部分,是我国经济建设根本任务的一个重要方面。