查询词典 diagonally dominant matrix
- 与 diagonally dominant matrix 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The first part is basic concept and axioms: Gives the definition and the basic theorem of diagonally dominant matrix, M-matrix, H-matrix which involve in this paper.
第一部分为基本概念和定理:给出本文所涉及的对角占优矩、M-矩阵、H-矩阵的基本概念和定理。
-
Generalized diagonally dominant matrix、 M-matrix andH-matrix play an important role in numerical algebra、economy、cybernetics theory and so on.
对角占优矩阵、M-矩阵、H-矩阵是应用范围很广的特殊矩阵类,它们在数值代数、数量经济学、控制理论等领域都有重要作用。
-
In chapter one, firstly, we introduce the properties of αdiagonally dominant matrix and some exists determination conditions of generalized strictly diagonally dominant matrix, then we give some new results for the criteria of generalized strictly diagonally dominant matrix, finally, we show the validity of these conclusions.
在第一章中,首先引述了α-对角占优矩阵的性质及已有的一些判定条件,给出了判定广义严格对角占优矩阵的几个新的结论,最后说明了这些结论的有效性。
-
In chapter two, by using the elements of the matrix we first construct some multiplier factors, then, use the properties of αdiagonally dominant matrix and the techniques of inequalities, we give some new determination conditions for generalized strictly diagonally dominant matrix, these theory have improved some existing results.
在第二章中,利用矩阵某些元素,构造出了几个乘积因子,然后利用α-对角占优矩阵的一些性质,结合放缩不等式的技巧,给出了广义严格对角占优矩阵的几个新的判定条件,改善了已有的某些结果。
-
The second part is the judge method and its improvement method of a matrix is a diagonally dominant matrix: Introduces some basic methods to judge a matrix be a diagonally dominant matrix .Gives some improvement methods, and some number examples.
第二部分为广义严格对角占优矩阵的判定方法及其改进:介绍判定广义严格对角占优矩阵的一些基本方法,给出一些广义严格对角占优矩阵判定方法的改进,并给出数值例子。
-
In chapter four, by defining and studying a type of local doublediagonally dominant matrix, we give some new criteria foridentifying generalized strictly diagonally dominant matrix, andextend some existing results.
第四章定义了一种局部双对角占优矩阵,给出了广义严格对角占优矩阵的几个新判别法,推广了已有的一些结果。
-
If A∈Rn×n is a L-matrix,and A isn't a diagonally dominant matrix,then some properties of the quasi diagonally dominant matrix with chain of non-zero elements were given.
对角占优矩阵、拟对角占优矩阵、H-矩阵等特殊矩阵在许多工程领域中起着很重要的作用,吸引了许多数学工作者对它的性质进行研究[1-5]。
-
In chapter three, at first we introduces two kinds locally double αdiagonally dominant matrix from the concept of αdiagonally dominant matrix, by using this conception and the properties of αdiagonally dominant matrix and the techniques of inequalities, we discuss the relation of locally double αdiagonally dominant matrix and generalized strictly diagonally dominant matrix, according to these relations we obtain some effective criteria for generalized strictly diagonally dominant matrix.
在第三章中,首先由α-对角占优矩阵的定义,引进了两类局部双α对角占优矩阵,并利用它们及α-对角占优矩阵的性质,结合放缩不等式的技巧,讨论了局部双α对角占优矩阵与广义严格对角占优矩阵的关系,并由此得到判定广义严格对角占优矩阵的几个实用准则。
-
Examples illustrate that some special properties of the diagonally dominant matrix with chain of non-zero elements probably doesn't come into existence for quasi diagonally dominant matrix with chain of non-zero elements.
譬如目前关于拟对角占优矩阵的判定定理就有数十条之多[6-7],至今仍有许多相关结论发表,其中杨志明[1]给出了拟具非零元素链对角占优矩阵的定义,并就这类矩阵的特征值的分布情况进行了讨论。
-
The third part is the judge method and its improvement method of a piece matrix is a diagonally dominant matrix: By using the Schur repair property of matrices, gives the sufficient and necessary conditions to judge a piece matrix be a diagonally dominant matrix.
第三部分为分块广义严格对角占优矩阵的判定方法及其改进:利用矩阵Schur补的性质,给出判定分块广义严格对角占优矩阵的充要条件,并利用逐次降阶的方法,使一个任意阶矩阵A逐次降为只需要利用定义判定一个矩阵是否满足要求,从而判定A是否是广义严格对角占优矩阵。
- 推荐网络例句
-
On the other hand, the more important thing is because the urban housing is a kind of heterogeneity products.
另一方面,更重要的是由于城市住房是一种异质性产品。
-
Climate histogram is the fall that collects place measure calm value, cent serves as cross axle for a few equal interval, the area that the frequency that the value appears according to place is accumulated and becomes will be determined inside each interval, discharge the graph that rise with post, also be called histogram.
气候直方图是将所收集的降水量测定值,分为几个相等的区间作为横轴,并将各区间内所测定值依所出现的次数累积而成的面积,用柱子排起来的图形,也叫做柱状图。
-
You rap, you know we are not so good at rapping, huh?
你唱吧,你也知道我们并不那么擅长说唱,对吧?