英语人>网络例句>degree of a polynomial 相关的网络例句
degree of a polynomial相关的网络例句

查询词典 degree of a polynomial

与 degree of a polynomial 相关的网络例句 [注:此内容来源于网络,仅供参考]

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

Tested approaches where background reflectance is described as a n-degree polynomial in wavelength, resulting in a second degree polynomial (n=2) for the O2-A band, while a higher degree polynomial (n=6) was necessary for the O2-B band, as tested over a large database of many possible combinations of r and F cases.

测试(2009)方法在背景反射被描述为一个n-degree 多项式的波长,导致了第二学位多项式(n = 2),而O2-A乐队更高程度的多项式(n = 6)是必要的,O2-B乐队测试在大型数据库的吗许多可能的组合和F的病例。

The highest degree of all the trem in a polynomial is called the degree of the polynomial.

一个多项式的次数就是其中最大的单项式的次数。

The degree of a polynomial is equal to the highest power of x in it; here it is 2 because of the x2 term.

一个多项式的阶与其中x的最高次幂相等;这里是2因为x^2项。

Chapter two study iteration of a serial of polynomial, discussed the sufficient and necessary conditions and denseness of the Julia set, the relative random dynamical system is constructed by some high degree polynomial. In addition, it discuss the Mandelbrot set of a kind of polynomial.

本文的第二章主要研究多个函数的特定迭代序列,讨论了高次多项式的随机复动力系统的Julia集的连通的充分必要条件以及稠密性问题,同时还讨论了一类多项式函数的Mandelbrot集。

The correlation between the degree of the polynomial and its irreducible factors is analyzed, and then a sufficient and necessary condition on judging whether a polynomial of arbitrary degree n over finite fields is irreducible or not is presented.

分析了多项式次数与其不可约因式之间的内在联系,给出了有限域上任意n次多项式是否为不可约多项式、本原多项式的一个充要条件。

Finally, we present an efficient algorithm for computing the minimal polynomial of a polynomial matrix. It determines the coefficient polynomials term by term from lower to higher degree.

最后,我们给出了一种计算多项式矩阵最小多项式或特征多项式的有效算法,它从低次项到高次项逐项确定最小多项式的系数多项式。

Sign pattern A is a SAP if every monic real polynomial of degree n can be achieved as the characteristic polynomial of a matrix with sign pattern A.

若给定任意一个n次首一实系数多项式f,都存在一个实矩阵B∈Q,使得B的特征多项式为f,则称A为谱任意符号模式。

The second line contains n+1 integers, representing the coefficients of a polynomial from power degree N down to power degree 0, each integer is no less than 0 and no more than 10000.The output of each test case should consist one line, containing the result of the polynomial.

第二行含有n + 1整数,代表了一个多项式的系数从电力度下降到0度氮,每个整数的力量是不低于0和1万多…输出的每个测试用例应该包含一条直线,包含结果的多项式。

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

第1/5页 1 2 3 4 5 > 尾页
推荐网络例句

Breath, muscle contraction of the buttocks; arch body, as far as possible to hold his head, right leg straight towards the ceiling (peg-leg knee in order to avoid muscle tension).

呼气,收缩臀部肌肉;拱起身体,尽量抬起头来,右腿伸直朝向天花板(膝微屈,以避免肌肉紧张)。

The cost of moving grain food products was unchanged from May, but year over year are up 8%.

粮食产品的运输费用与5月份相比没有变化,但却比去年同期高8%。

However, to get a true quote, you will need to provide detailed personal and financial information.

然而,要让一个真正的引用,你需要提供详细的个人和财务信息。