查询词典 cauchy integral formula
- 与 cauchy integral formula 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The content of this course is: analytic function (the definition of analytic function, elementary functions, etc.), conformal mapping (the definition if conformal mapping, fractional linear functions, elementary mappings, etc.), complex integration (Cauchy's integral formula, Cauchy's theorem, etc.), Series (Laurent Series, singularities, local property, etc.), residues and its applications (the Residues Theorem, integration by residues, the Argument Principle, the Maximum Principle, Schwarz's Lemma, etc.), analytic continuation and harmonic functions, etc.
本课程内容主要包括:解析函数(解析函数的定义、初等函数等)、共形映射(共形映射的定义、分式线性变换及初等映射等)、复积分(Cauchy 积分公式、 Cauchy 定理等)、级数(Laurent 级数、孤立奇点、局部映射等)、留数及其应用(留数定理、利用留数计算积分、幅角原理、最大模原理、 Schwarz 引理等)、解析开拓和调和函数等内容。
-
In this paper, we consider the properties of so_called N_analytic functions , integral formula of Cauchy type and the problem of Riemann boundary value.
研究了N 解析函数的性质、Cauchy型积分公式及相应的Riemann边值问题,然后将其结果应用到一类奇异微分—积分复方程的可解性理论中,建立了其特征方程解的积分表示式。
-
In terms of Cauchy s integral formula of analytical complex function and the three order spline function of complex variable, a general boundary solution method is presented for solving the complex potential field of the flow field around a 2D semi infinite body .
采用复解析函数的Cauchy积分公式和物面复势三阶样条函数逼近,提出了一种求解二维半无限体势流绕流问题复势的通用方法。
-
The boundary element method for the Riemann-Hilbert boundary value problems for the generalized analytic function uses Cauchy integral formula as the foundation . The singularity of the Cauchy
广义解析函数的Riemann-Hilbert边值问题的边界元方法是以Cauchy公式为基础,Cauchy核具有奇性,这是所面临的困难,可以设法利用Cauchy主值积分来解决,最后给出问题的解。
-
Utilizing the tools of conformal mapping and Cauchy integral formula and so on, the SIFs at the crack tips are obtained, which can be reduced to the known results under the condition of limitation; For the third and the fourth section, the problems of arc crack and parabolic crack are researched in one dimensional hexagonal QCs.
第二节研究了一维六方准晶狭长体中双半无限共线裂纹问题,利用保角变换以及Cauchy积分公式等工具求得了裂尖处的应力强度因子,在极限的情况下可以还原为若干已有的结果。
-
As to its computing methods, this paper synthesizes six kinds, they are: utilizing a general integral method of complex function directly; utilizing Cauchy integral theorem; utilizing Cauchy integral formula; utilizing Cauchy high-level differential coefficient; utilizing Cauchy residue theorem; utilizing the residual of logarithm.
关于周线积分的计算方法,本文综合了六种,它们分别是:直接利用一般的复变函数积分的方法;利用柯西积分定理;利用柯西积分公式;利用柯西高阶导数公式;利用柯西留数定理;利用对数留数。
-
Let D be a bounded domain with C(1) boundary in Cn . The authors use the locally finite open coverring of the countable strictly pseudoconvex to define a new partitions of unity of σpoint finite local holomorphic , constructed a generalized Cauchy integral formula with discrete local holomorphic kernel on the bounded domain D and applied it to solving the 52equation.
设D 是Cn 空间中具有C(1)边界5D 的有界域,本文利用D 上一个局部有限的可数强拟凸开复盖,定义了D上一个新的局部全纯的σ点有限的单位分解,建立了D上一个更一般的具有离散局部全纯核的Cauchy积分公式并获得D 上52 方程的具有离散核的解的积分表示。
-
Secondly,we firstly study the properties of functions with values in a uni-versal Clifford algebra 〓,and we obtain the following very important basictheorems in universal Clifford analysis:Cauchy's integral formula,Cauchy's inte-gral theorem,the mean value theorem,the three versions of the maximum mod-ulus theorem,the Taylor's expansion,the Laurent's expansion and the residuetheorem etc..All of these results generalized the classical results.
第二,本文所讨论的各种函数性质以及所得的结果都在泛Clifford代数〓上所做的工作,它一方面包含了从前在泛Clifford代数〓上所做的工作,所得到的结果更广泛、更漂亮、更自然,另一方面,本文也是迄今为止第一次建立起来了在泛Clifford分析中与经典函数论相对照处基础地位的LR正则函数在特异边界上的Cauchy积分公式、Cauchy积分定理、平均值定理、极大模原理的三种表达形式、Taylor展式、Laurent展式留数定理等深刻的结果。
-
For the Riemann boundary value problems for the first order elliptic systems , we translates them to equivalent singular integral equations and proves the existence of the solution to the discussed problems under some assumptions by means of generalized analytic function theory , singular integral equation theory , contract principle or generaliezed contract principle ; For the Riemann-Hilbert boundary value problems for the first order elliptic systems , we proves the problems solvable under some assumptions by means of generalized analytic function theory , Cauchy integral formula , function theoretic approaches and fixed point theorem ; the boundary element method for the Riemann-Hilbert boundary value problems for the generalized analytic function , we obtains the boundary integral equations by means of the generalized Cauchy integral formula of the generalized analytic function , introducing Cauchy principal value integration , dispersing the boundary of the area , and we obtains the solution to the problems using the boundary conditions .
对于一阶椭圆型方程组的Riemann边值问题,是通过把它们转化为与原问题等价的奇异积分方程,利用广义解析函数理论、奇异积分方程理论、压缩原理或广义压缩原理,证明在某些假设条件下所讨论问题的解的存在性;对于一阶椭圆型方程组的Riemann-Hilbert边值问题,利用广义解析函数理论、Cauchy积分公式、函数论方法和不动点原理,证明在某些假设条件下所讨论问题的可解性;广义解析函数的Riemann-Hilbert边值问题的边界元方法是利用广义解析函数的广义Cauchy积分公式,引入Cauchy主值积分,通过对区域边界的离散化,得到边界积分方程,再利用边界条件得到问题的解。
-
The thesis consists of the followingmain results:the Cauchy's integral formula on certain distinguished boundaryfor LR regular functions with values in a universal Clifford algebra 〓,theCauchy's integral theorem,the mean value theorem,the maximum modulus the-orem.the Taylor's expansion,the Laurent's expansion and the residue theoremetc..
第一章叙述了泛Clifford代数基本理论,其中,我们首先准确而又富有创造性地给出了在泛Clifford代数〓上的一个对合运算表示,由此,我们给出了在泛Clifford代数〓上的一个内积,然后,我们借此给出了在泛Clifford代数〓上的相应的两个等价的范数,并证明了若在〓上赋予其中的一个范数,则〓是一个Banach代数。
- 推荐网络例句
-
This one mode pays close attention to network credence foundation of the businessman very much.
这一模式非常关注商人的网络信用基础。
-
Cell morphology of bacterial ghost of Pasteurella multocida was observed by scanning electron microscopy and inactivation ratio was estimated by CFU analysi.
扫描电镜观察多杀性巴氏杆菌细菌幽灵和菌落形成单位评价遗传灭活率。
-
There is no differences of cell proliferation vitality between labeled and unlabeled NSCs.
双标记神经干细胞的增殖、分化活力与未标记神经干细胞相比无改变。