英语人>网络例句>algebras 相关的网络例句
algebras相关的网络例句

查询词典 algebras

与 algebras 相关的网络例句 [注:此内容来源于网络,仅供参考]

Arad and Blau proved that an abelian table algebra can be viewed as a group algebra of some abelian group G. Chapter 3 of this paper gives the structural theorem of abelian table algebras by defining a group structure in table basis. Furthermore, the structure of elementary abelian table algebras is discussed using the number of composition series of table algebras.

Arad和Blau证明了abel表代数等价于某个有限生成abel群G的群代数,受此启发本文第3节通过定义表基的一个群结构给出了abel表代数的结构定理,并从合成列数目的角度对初等abel表代数进行了细致刻画。

We discuss the relation between elementary maps and ring isomorphisms, andwe give a characterization of elementary maps on stndard operator algebras on Banachspaces, JSL-algebras and nest algebras. For Jordan-triple elementeary maps, we provetheir additivity on a class of ring and show a relation of them with Jordan isomorphisms. Furthermore. we describe the Jordan elementary maps on standard operator algebrasand nest algebras. We also study the semi-Jordan elementary maps on effect algebrasand the space of self adjoint operators.

研究了算子代数上的初等映射和环同构的关系,完全刻画了Banach空间上标准算子代数,JSL代数和套代数上的初等映射;讨论了Jordan-triple初等映射的可加性以及它和Jordan同构的关系,进而完全刻画了Banach空间上标准算子代数和套代数上的Jordan-triple初等映射;刻画了效应代数和自伴算子空间上的semi-Jordan初等映射。

Ringel realized positive parts of semisimple Lie algebras in the framework of Ringel-Hall algebras. The main result of this thesis is to build a geometric and topological model over triangulated categories such as derived categories and stable module categories of repetitive algebras. We defines a Lie bracket by Euler characteristics of constructible subsets and thus realizes infinite dimensional Lie algebras of various types with non-degenerated bilinear form.

本文的主要结果是在导出范畴和重复代数的稳定模范畴等三角范畴水平上建立相应的几何-拓扑模型,并利用相应可构集的欧拉示性数定义了一个Hall代数的交换子乘法,从而在三角范畴水平上实现了一大类无限维李代数的整体构造,并且这类李代数本质上都具有非退化的不变双线性型。

In chapter 2, a new concept- property T〓 is introduced, it is proved that nest subalgebras of von Neumann algebras, finite width CSL and atomic CSL subalgebras of von Neumann algebras have property T〓. Some tensor product formulae of nest subalgebras and CSL subalgebras in von Neumann algebras are obtained. Tensor products of W〓-dynamical systems are studied. Finally, the essential commutant of tensor product of operator algebras is discussed.

第二章我们引入了性质T〓这一新概念,并证明了任一vonNeumann中的任何套子代数,有限宽度的可交换格子代数和原子可交换格子代数都具有性质T〓;得到了von Neumann代数中套子代数和可交换格子代数的张量积公式;研究了W*-动力系统的张量积问题;最后讨论了张量积代数的本性换位。

Ringrose began to study nest algebras in the 1960s, many people have devoted themselves to the study of non-selfadjoint and reflexive operator algebras including nest algebras, commutative subspace lattice algebras, completely distributive subspace lattice algebras and so on, and obtain a lot of beautiful achievements.

自从60年代J.Ringrose开始研究套代数以来,人们对套代数、交换子空间格代数和完全分配子空间格代数等非自伴自反算子代数进行了深入研究,并且取得了大量出色的研究成果。

In chapter 3, Jordan derivations and Jordan isomorphisms of nest algebras are investigated. It is proved that every Jordan derivation of nest algebra is an inner derivation. Every Jordan isomorphism between nest algebras is either an isomorphism or an anti-isomorphism. Finally, a norm estimate for derivations of nest subalgebras of von Neumann algebras is given, and it is shown that every nest subalgebra of factor von Neumann algebras has property AIP .

第三章研究了套代数上的Jordan导子和Jordan同构,证明了套代数上的每一个Jordan导子都是内导子;套代数之间的每一个Jordan同构要么是同构要么是反同构;最后给出了因子von Neumann代数中套子代数上导子的一个范数估计,同时也证明了因子von Neumann代数中的任何一个套子代数都具有AIP性质。

In chapter 4, Based on the orthogonality relations and duality of C-algebras, we study the decompositions of C-algebras, and give a Fourier inversion formula on C-algebras, which generalizes the Fourier inversion formula on the center of a finite group algebra over complex. As an application, we characterize the integral closure of C-algebras over the ring of integers, and show a necessary and sufficitient condition for elements of C-algbras being algbraic integral over integers.

第四章 我们应用C-代数的正交性及对偶性刻画了C-代数的一个分解,给出了C-代数上这个完全分解的Fourier反演公式,从而推广了Z分解的Fourier反演公式;作为Fourier反演公式的一个应用,我们刻画了Z在整数环Z上的整闭包,进一步我们研究了C-代数在整数环Z上的整闭包,给出了C-代数在整数环Z上为整元的一个充要条件。

The formal deductive systenm for Fuzzy propositional calculus, R0-algebras and BR0-algebras have been studied. The concepts of WBR0-algebras are proposed, the relationship between it and BR0-algebras has been investigated, the definition of basis BR0-algebras is simplified. Based on discussing the relationship between regular FI-algebras and regular residual lattice, the relationship between FI-algebras and basis R0-algebras has been investigated.

研究了王国俊教授建立的模糊命题演算的形式演绎系统L和与之在语义上相匹配的R0-代数以及吴洪博教授提出的基础R0-代数和基础L系统,提出了WBR0-代数的观点,讨论了它与BR0-代数的关系,简化了BR0-代数的定义,在讨论正则FI-代数与正则剩余格之间关系的基础上,讨论了BR0-代数与FI-代数的相互关系。

The concepts of MP-filters and Boolean MP-filters in NML algebras are introduced in this paper, and by using MP-filters, the structure of NML algebras are established: If F is the Boolean filters, then M/~ is the Boolean algebras, i. e. the quotient algebra of NML algebras is obtained.

讨论了NML代数的性质,并且在NML代数上引入MP-滤子与MP-理想以及布尔MP-滤子的概念,并利用布尔MP-滤子建立了NML代数的结构:若F是布尔滤子,则M/~是布尔代数,即NML代数的商代数是布尔代数。

We introduce some concepts, such as yon Neumann algebras, factor von Neumann algebras, nest algebras and so on, and give some well-known theorems that we will use in this paper. In Chapter 2, we put our attention on linear maps that preserving zero Jordan triple product on nest subalgebrasof factor yon Neumann algebras.

第二章首先对因子von Neumann代数中套子代数上保Jordan三重零积的线性映射进行了研究,证明了从因子von Neumann代数中套子代数到任一有单位元的Banach代数的保Jordan三重零积的单位线性双射是Jordan同构。

第1/24页 1 2 3 4 5 6 7 8 9 ... > 尾页
推荐网络例句

Plunder melds and run with this jewel!

掠夺melds和运行与此宝石!

My dream is to be a crazy growing tree and extend at the edge between the city and the forest.

此刻,也许正是在通往天国的路上,我体验着这白色的晕旋。

When you click Save, you save the file to the host′s hard disk or server, not to your own machine.

单击"保存"会将文件保存到主持人的硬盘或服务器上,而不是您自己的计算机上。