查询词典 Riemannian
- 与 Riemannian 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In chapter 3,we prove that a complete noncompact n-dimensional Riemannian manifold M whose Ricci curvature Ric_M ≥(n- 1) has finite topological type or diffeomorphic to R~n if its Excess function has some upper bound at a point.
第三章,我们证明了对于Ricci曲率Ric_M≥-(n-1)的完备非紧n维Riemann流形M,若它的共轭半径有正的下界且共轭半径的某个函数为M在某一点的Excess的上界时,它就有有限拓扑型或者微分同胚于n维欧几里德空间。
-
At the most basic level, this course gives an introduction to the basic concepts of differential manifolds, exterior differentiation and Riemannian manifolds.
本课程主要介绍微分流形的基本概念和例子、外微分以及黎曼流形的初步知识。
-
This is a sub-Riemannian version of the fundamental theorem in Rie-mannian geometry.
这是黎曼几何基本定理的次黎曼版本。
-
It is embodied in the three research programs of modern physics:(1) According to the program of geometrization of physics, the essence of the Curved Space in gravitational field needs to be explicated by Riemannian geometry, differential geometry, tensor analysis;(2)According to the program of quantum field theory, the generation and annihilation operator can represen...
它分别体现在现代物理学的三大研究纲领中:(1)根据物理学的几何化纲领,引力场弯曲空间的奥秘需要通过黎曼几何、微分几何与张量分析来解读;(2)根据量子场论纲领,场理论的"产生和湮灭"算符,能方便而精确地表征和重构相关的微观作用机制;"场的本体论"和"生成辩证法"同时得到体现。
-
We studied the global differential geometry of Riemannian manifolds and submanifolds including minimal submanifolds, constant mean curvature submanifolds, complex submanifolds and symplectic submanifolds, etc..
研究黎曼流形及其子流形的整体微分几何性质,包括研究极小子流形、常平均曲率子流形、复子流形和辛子流形等。
-
Yano about the harmonic and Killing vector fields in Compact orientable Riemannian spaces with boundary by means of Stokes' and Green's theorem.
Yano 关于具有边界的可定向黎曼流形上的调和和Killing向量场的结果加以推广,显然这个方法也可应用到调和张量场和Killing张量场的情形,这将在另文讨论。
-
We establish an asymptotic Lipschitz homotopy invariance theorem for these K-homology groups and K-theory groups. We show that the asymptotic index maps are isomorphisms for the asymptotically scaleable spaces, which include Euclidean cones, simply connected complete Riemannian manifolds with nonpositive curvature.
我们证明了这些K-同调群和K-理论群具有渐近Lipschitz同伦不变性;对于渐近可标度的几何空间(包括欧氏锥、单连通非正曲率完备黎曼流形等),证明了渐近指标映射为同构。
-
In the second chapter, we investgate the Type II singularity of mean curvature flow of compact hypersurface in Riemannian manifold.
在第二章中我们讨论了一般黎曼流形中紧致超曲面在平均曲率流下的形变并且对它们的第二类奇点进行了分析。
-
Simons [30] proved the non-existence theorem for stable integral current in acompact Riemannian submanifold isometrically immersed into a unit sphere andvanishing theorem for homology groups. In 1984, Y. L. Xin [47] generalized theLawson-Simon\'s nonexistence theorem for stable integral current and vanishingtheorem for homology groups to the case of compact submanifolds in Euclideanspace, and gave several important applications.
Simons运用Federer-Fleming存在性定理[19]和几何测度论中变分技巧证明了单位球面中紧致黎曼子流形上稳定积分流的不存在性定理和同调群消没定理[30]。1984年,忻元龙将Lawson-Simons稳定积分流的不存在性定理和同调群消没定理拓广到了欧氏空间中紧致子流形的情形,并给出了若干重要的应用[47]。1997年,K。
-
Simons [30] proved the non-existence theorem for stable integral current in acompact Riemannian submanifold isometrically immersed into a unit sphere andvanishing theorem for homology groups. In 1984, Y. L. Xin [47] generalized theLawson-Simons nonexistence theorem for stable integral current and vanishingtheorem for homology groups to the case of compact submanifolds in Euclideanspace, and gave several important applications.
Simons运用Federer-Fleming存在性定理[19]和几何测度论中变分技巧证明了单位球面中紧致黎曼子流形上稳定积分流的不存在性定理和同调群消没定理[30]。1984年,忻元龙将Lawson-Simons稳定积分流的不存在性定理和同调群消没定理拓广到了欧氏空间中紧致子流形的情形,并给出了若干重要的应用[47]。1997年,K。
- 推荐网络例句
-
On the other hand, the more important thing is because the urban housing is a kind of heterogeneity products.
另一方面,更重要的是由于城市住房是一种异质性产品。
-
Climate histogram is the fall that collects place measure calm value, cent serves as cross axle for a few equal interval, the area that the frequency that the value appears according to place is accumulated and becomes will be determined inside each interval, discharge the graph that rise with post, also be called histogram.
气候直方图是将所收集的降水量测定值,分为几个相等的区间作为横轴,并将各区间内所测定值依所出现的次数累积而成的面积,用柱子排起来的图形,也叫做柱状图。
-
You rap, you know we are not so good at rapping, huh?
你唱吧,你也知道我们并不那么擅长说唱,对吧?