英语人>网络例句>Riemann 相关的网络例句
Riemann相关的网络例句

查询词典 Riemann

与 Riemann 相关的网络例句 [注:此内容来源于网络,仅供参考]

For the Riemann boundary value problems for the first order elliptic systems , we translates them to equivalent singular integral equations and proves the existence of the solution to the discussed problems under some assumptions by means of generalized analytic function theory , singular integral equation theory , contract principle or generaliezed contract principle ; For the Riemann-Hilbert boundary value problems for the first order elliptic systems , we proves the problems solvable under some assumptions by means of generalized analytic function theory , Cauchy integral formula , function theoretic approaches and fixed point theorem ; the boundary element method for the Riemann-Hilbert boundary value problems for the generalized analytic function , we obtains the boundary integral equations by means of the generalized Cauchy integral formula of the generalized analytic function , introducing Cauchy principal value integration , dispersing the boundary of the area , and we obtains the solution to the problems using the boundary conditions .

对于一阶椭圆型方程组的Riemann边值问题,是通过把它们转化为与原问题等价的奇异积分方程,利用广义解析函数理论、奇异积分方程理论、压缩原理或广义压缩原理,证明在某些假设条件下所讨论问题的解的存在性;对于一阶椭圆型方程组的Riemann-Hilbert边值问题,利用广义解析函数理论、Cauchy积分公式、函数论方法和不动点原理,证明在某些假设条件下所讨论问题的可解性;广义解析函数的Riemann-Hilbert边值问题的边界元方法是利用广义解析函数的广义Cauchy积分公式,引入Cauchy主值积分,通过对区域边界的离散化,得到边界积分方程,再利用边界条件得到问题的解。

In this paper,at first we transformed the nonlinear elliptic system of 2m first order equations into the complex form, then by use the results on the Riemann-Hilbert problem for nonlinear elliptic complex equation of first order, the method of continuity, the Schauder fixed-point theorem and the Leray-Schauder theorem, we proved that the modified Riemann-Hilbert boundary value problem for the complex system with some conditions is solvable.

本文先将较一般的多个未知函数的一阶椭圆型实方程组化为复方程组,然后讨论这些复方程组在某些条件下的一些边值问题的可解性。这里所考虑的方程组既包含线性的,也包含非线性的,比广义超解析函数所满足的方程组还要广,又本文主要研究较一般的Riemann-Hilbert边值问题,先给出这种边值问题解的先验估计式,然后用参数开拓法及Leray-Schauder定理证明这种边值问题的可解性结果。

The second chapter is the main part of this paper, in which the formulation of the Riemann boundary value problem of non-normal type on the real axis, the solution method of homogeneous problem, the relation between the two kinds of different derivatives and the inhomogeneous problem will be thoroughly given. In this paper, the solution and the solvability of the Riemann boundary value problem of non-normal type on the real axis will be given. Furthermore, it is shown that the twokinds of derivatives of the function Ψ are existing and equivalent in the case ofthe solution about the original problem, therefore, we get uniformly Hermite interpolatory polynomial. The relation between the two kinds of different derivativesof the function Ψ are similar for smooth closed contours by means of the same proof.

第二章是本文的主要部分,分别给出了实轴上一类非正则型Riemann边值问题的提法、齐次问题的解法、两种导数的关系及非齐次问题的求解,本文运用杜金元教授[11]的方法获得了实轴上非正则型Riemann边值问题的封闭解及可解性条件,且在问题可解的情况下论证了函数Ψ的非切向极限导数和Peano导数存在且相等,从而获得了统一的Hermite插值多项式,同样关于封闭曲线上非正则型Riemann边值问题,采用本文论证方法证得了函数Ψ的非切向极限导数和Peano导数存在且相等,从而较好地统一了[10]、[11]中的Hermite插值多项式。

We generalize the concept of the set of variability defined in the unit diskby K.Strebel to general Riemann surfaces and prove that the set of variablity withrespect to the modulo homotopic class of a quasiconformal mapping between twoRiemann surfaces is a compact and connected subset.Consequently the num-ber of the extremal mappings in the modulo homotopic class of a quasiconformalmapping between two general Riemann surfaces is either one or infinity.

Strebel的定义在单位圆上的可变性集合的概念推广到一般Riemann曲面上去,并且证明了Riemann曲面之间的拟共形映射的模边同伦类所确定的可变性集合是一个连通的紧子集,从而得出一般Riemann曲面之间拟共形映射的模边同伦类中的极值映射要么唯一,要么有无穷多个。

Mathematic proof of the hypertonicity for this model is given using two different cases. Furthermore, the Riemann invariants for the multi-class traffic flow LWR model are studied by using characteristic line method, and the physical interpret of the Riemann invariants are also pointed out. The information in transfer is obtained, that is, the total density and the relative density hold the same.

用两种方法给出了该模型在不同情形下双曲性的数学证明,运用特征线方法研究并计算了任意等级MCLWR交通流模型的Riemann不变量,得到了其传递的交通信息,给出了Riemann不变量物理意义的解释,即总密度保持不变和相对密度保持不变,最后又从形式上指出了在多等级车流并行时,MCLWR与LWR两种交通流模型实际上是等价的。

By the research of metric tensor and Riemann tensor on Riemann manifold, we getthe inherent curvature of configuration space belonging to parallel mechanism.

通过对度量张量和Riemann张量的研究,得出并联机构运动可达子空间的内在"弯曲"性质,指出使用相对坐标系和广义坐标是研究并联机构运动学和动力学问题的必然选择。

Secondly, based on the different structure characteristics and additional conditions, we study several kinds of inverse problems of pseudoparabolic equations. One is a kind of pseudoparabolic inverse problem of identifying a constant coefficient solved by combining the formal solution of the problem and the additional condition properly. The second is the pseudoparabolic inverse problems of identifying an unknown boundary function and an unknown source term solved by using the Riemann function method to get the formal solution of the problem and then using the additional condition to transform the problem into a Volterra integral equation of the second kind. The third is a kind of backward heat flow problem of nonlinear pseudoparabolic equation solved by combining the Riemann function method and the fixed point theory properly.

其次,根据不同模型的结构特点和附加条件,研究了几类伪抛物型方程的反问题:一是利用问题的形式解并结合附加条件,解决了一类伪抛物型方程常数系数的反问题;二是利用Riemann函数方法获得问题的形式解,利用附加条件将问题转化成求解第二类Volterra积分方程问题,解决了一类伪抛物型方程未知边界值的反问题和未知源项的反问题;三是将Riemann函数方法和不动点定理相结合,解决了一类非线性伪抛物型方程的后向热流问题。

Thirdly,we study certain Riemann boundary value problems and Singularintegral equations with values in a universal Clifford algebra 〓,by com-bining the classical methods of solving Riemann boundary value problems andsingular integral equations with the Taylor's expansion of regular function in Clif-ford analysis,proving a lemma which is similar to the Painleve theorem in theclassical complex analysis,and the Plemelj formula in Clifford analysis,we obtainthe better results under weaker condition than before.

第三,本文第一次借助于用来解决经典的Riemann边值问题与奇异积分方程的方法来研究Clifford分析中的某些Riemann边值问题与奇异积分方程,获得了在比以前文献中条件更弱的情况下,结论更广的结果,并且,它为更进一步地解决在Clifford分析中一般的Riemann边值问题与奇异积分方程提供了基本的解决思想,为这一新的研究领域奠定了基础。

It introduces partial fractions of meromorphic functions, product developments of entire functions, Hadamard's theorem, Riemann Zeta functions, Poisson-Jensen's formula; elliptic functions, including simply periodic functions and doubly periodic functions; algebraic functions and algebroid functions, Riemann surface, Nevanlinna theory, including characteristic functions, the first and second fundamental theorems, growth orders, etc; complex differential equations and complex functional equations, etc.

具体为:亚纯函数的部分分式、整函数的无穷乘积展开、Hadamard定理、Riemann Zeta函数、Poisson-Jensen公式;椭圆函数,包括单周期函数、双周期函数;代数函数和代数体函数、Riemann曲面简介;Nevanlinna理论简介,包括特征函数、第一和第二基本定理、增长级等;复微分方程和复函数方程,等等。在教学内容上充分体现基础性、新颖性。

The most researches on Riemann boundary value problem are confined to normal type. The Riemann boundary value problem of non-normal type on smooth closed contours first arised in the book [1] written by F.D.

Riemann边值问题的研究大多限于正则型Riemann边值问题,封闭曲线上非正则型Riemann边值问题的研究最早始于F.D。

第1/16页 1 2 3 4 5 6 7 8 9 ... > 尾页
推荐网络例句

On the other hand, the more important thing is because the urban housing is a kind of heterogeneity products.

另一方面,更重要的是由于城市住房是一种异质性产品。

Climate histogram is the fall that collects place measure calm value, cent serves as cross axle for a few equal interval, the area that the frequency that the value appears according to place is accumulated and becomes will be determined inside each interval, discharge the graph that rise with post, also be called histogram.

气候直方图是将所收集的降水量测定值,分为几个相等的区间作为横轴,并将各区间内所测定值依所出现的次数累积而成的面积,用柱子排起来的图形,也叫做柱状图。

You rap, you know we are not so good at rapping, huh?

你唱吧,你也知道我们并不那么擅长说唱,对吧?