查询词典 Lie algebra
- 与 Lie algebra 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Mathieu[17] discribe the form of Lie derivations on primitive ring whose charater is not 2 and which has no non-trivial idempotent. After that, Miers[18],Mathieu and Villena[19] also study Lie derivations on Von Neumann algebra and algebra.
Martindale[17]首先讨论了特征不等于2且含非平凡幂等元的本原环上的Lie导子的表达形式,随后Miers[18],Mathien和Villena[19]也分别对VN代数,C~*-代数上的Lie导子进行了刻画。
-
In Reference [3], Cao and Tan described the automorphisms of Lie algebra of the strictly upper triangular matrices over R which is a maximal nilpotent subalgebra of the A_n type classical simple Lie algebra.
在参考文献[3]中,曹和谭把由所有严格上三角矩阵所构成的李代数的自同构问题已经完整的解决了,而这样的李代数恰好就是A_n型李代数的一个极大幂零子代数。
-
For the simplest interactive system of two particles with spin 1/2,the operator of Lie algebra can only realize the transition among the triplets, however, in order to realize the transition between the triplets and the singlet, the operators of Yangian must be involved, that is ,Yangian goes beyond Lie algebra in Quantum Mechanics.
对于最简单的两个-1/2的耦合系统,李代数生成元只能实现其自旋三重态之间的跃迁,而要实现三重态和单态之间的跃迁,必须由Yangian代数中的J 算子所引起,即 J 成为量子力学中超越李代数生成元的算子。
-
First,we give some basic concepts of restricted Lie color algebra,for example,p-subalgebra,p-idea and p-nilpotent Lie color algebra.
然后,我们得到限制李color代数的Frattini子代数和Frattini p-子代数的基本性质并证得可解限制李color代数的Frattini子代数和Frattini p-子代数是两个幂零理想。
-
The solvable Lie algebra is corresponding to a cascade decomposition of the system and the semisimple Lie algebra is corresponding to a qasi-parallel decomposition such that the system has a parallel form of a cascade decomposition and a qasi-parallel decomposition.
任一李代数都可分解为一可解李代数与一半单李代数的半直和,可解李代数对应于系统的级联分解,半单李代数对应的是系统的准平行分解,将二者合并起来,就得到一般李群下的非线性系统的结构分解,这是一级联形式与一准平行形式的并联形式分解。
-
Let R be an arbitrary commutative ring with identity, gl the general linear lie algebra over R consisting of all n × n matricesover R and with the bracket operation = xy -yx, t the lie subalgebraof gl consisting of all n×n upper triangular (resp., strictly upper triangular ) matrices over R and d the lie subalgebra of gl consisting of all n×n diagonal matrices over R.
在第三章中,对R是交换环的情形,讨论了典型李代数的导子代数的结构问题:设R是一个含幺交换环,gl是R上一般线性李代数。t是gl的所有n阶上三角矩阵(相应地,严格上三角矩阵)构成的子代数,d是gl的所有n阶对角阵构成的李代数。
-
This result is a generalization of the Chevalley basis in case a simply-laced complex simple Lie algebra. Meanwhile, it generalizes also the corresponding Chevalley forms in case affine Lie algebras and 2- extended affine Lie algebras.
该结果是simply-laced复半单李代数情形下Chevalley基的推广,同时也是仿射李代数和2-扩大仿射李代数的相应Chevalley结构形式的推广。
-
As the center or the Algebra subalgebra of a algebra plays an important role in reducing the number of state variables, the cartan subalgebra is a maximum Abelian subalgebra of an algebra, so it can be a powerful tool for the structure simplification of control systems.
由于代数的中心,或交换子代数在系统的变量降低方面具有重要作用,而Cartan子代数是李代数的极大交换子代数,因而它能成为简化系统结构的有力工具,第二部分利用向量场的积分曲线所定义的映射,构造出一个S—坐标,在该坐标下任一向量场都有一个标准的表示方法,一种无穷级数表示方法。
-
Vector is the new high school textbooks and the new one of the important contents, it is rich in physical background, it is the object of study algebra, and geometry is the object of study is set,"the number of Form" in a mathematical concept of an abstract algebra, linear algebra and functional analysis of the basic mathematical model.
向量是高中新教材中新增加的重要内容之一,它有着丰富的物理背景,它既是代数研究的对象,又是几何研究的对象,是集"数、形"于一身的数学概念,是抽象代数、线性代数、泛函分析中的基本数学模型。
-
The thesis studies the formation of several basic algebraic terms such as "algebra","equation" in the book of Elements of Algebra and Algebra.
本文的研究表明,术语与其所表述的数学内容之间的差异反映当时数学术语在翻译时不能保证单义性和系统性。
- 相关中文对照歌词
- Why'd You Lie
- Lie Lie Lie Lie
- Don't Lie
- Black Mountain
- Algebra
- Lie Like A Rug
- Magpie
- Lie To Me
- Why'd You Lie To Me
- No Lie
- 推荐网络例句
-
Liapunov—Schmidt method is one of the most important method in the bifurcation theory.
Liapunov—Schmidt方法是分叉理论的最重要方法之一。
-
Be courteous -- even when people are most discourteous to you .
要有礼貌──即使当別人对你最不礼貌的时候。
-
I think we have to be very careful in answering these questions, because nothing is really so simple.
我认为,我们在回答这些问题的时候应该非常谨慎,因为事情远没有那么简单。