英语人>网络例句>Lagrange problem 相关的网络例句
Lagrange problem相关的网络例句

查询词典 Lagrange problem

与 Lagrange problem 相关的网络例句 [注:此内容来源于网络,仅供参考]

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

In the first part, convex duality method linearizes convex wealth equation, and the introduction of Lagrange multiplier converts original problem to an unconstrained static optimum problem. At last, we obtain another equivalent optimum problem with convex control domain.

文章前一部分运用凸对偶的方法先将财富方程线性化,Lagrange乘子的引入使最优问题等价与一个无约束的静态最优问题,最后转化为一个凸控制域的最优问题。

W anka studied two kinds of dualproblem in finite dimensional space,namely,an extended Fenchel type and FenchelˉLagrange dual based on the conjugate theorem in convex optimization problem.The latter is a"combination"of the classical Fenchel dual and Lagrange dual,which are based on perturbation theory.Then they introduced a constraint qualification whose fulfillment is sufficient in order to guarantee strong duality.

W anka利用有限维空间中凸优化问题的共轭理论,研究了两类对偶问题,即广义Fenchel对偶问题和FenchelˉLagrange对偶问题,后者是经典Fenchel和Lagrange对偶问题的组合,二者都是在扰动理论基础上产生的,还提出了一个约束条件保证其凸优化问题中强对偶成立。

The problem of Lagrange interpolation of polynomial space in space Rs is studied,and the construction of Lagrange interpolation polynomial in space R1 and space R2 is proposed.

研究空间Rs 中多项式空间中的Lagrange插值问题。给出了R1和R2上Lagrange插值多项式的构造,同时,给出了R2上插值问题的几个例子。另外,给出了矩形网点上的Lagrange插值多项式和三角形网点上的Lagrange插值多项式。讨论了Rs空间中的Lagrange插值多项式及其余项

The problem of sub-Riemannian geodesics is a Lagrange problem with constraint. How to describe the constraint condition "γ'∈ D, a. e." is a difficult problem.

次黎曼测地线问题是变分学中的一个有约束的Lagrange问题,但在变分的过程中有个难点―如何推出约束条件"γ'∈D,在上几乎处处成立"的解析式。

The PetrovGalerkin formulation is applied to solve the genera lized Stokes problem in each subdomain, and the Lagrange multiplier problem on the interfaces is solved using an algorithm of conjugated gradient. Velocity, density and Lagrange multiplier are approached in the spaces of continue piecewise linear functions.

应用PetrovGalerkin方法解每个子域上的广义Stokes问题,而交界面上的Lagrange乘子则通过共轭梯度法迭代求解,各变量均由线性函数离散。

In this paper, we propose a general model of a class of Lagrangian dual problem for the general nonlinear programming problem with respect to some Lagrange-type functions. We obtain that the zero duality gap exists between this class of Lagrangian dual problem and the primal problem.

针对一般的非线性规划问题,利用某些Lagrange型函数给出了一类Lagrangian对偶问题的一般模型,并证明它与原问题之间存在零对偶间隙。

A theorem of the alternative for the generalized subconvexlike set-valued maps is established using the separation theorem of convex sets in a Banach spaces, the concept of weak Benson proper efficient elements for a vector optimization problem is introduced, and the optimality necessary and sufficient Lagrange conditions for a vector set-valued map constrained optimization problem with the weak Benson proper efficiency is developed, with which the optimality Lagrange conditions for a nonconvex vector top-base constrained optimization of set-valued maps with the Benson proper efficiency are obtained.

刘莹 ,刘三阳,盛宝怀运用凸集分离定理对广义锥次类凸集值映射建立了一种择一性定理。引入向量优化弱Benson真有效元的概念,对带约束的非凸向量集值优化问题建立了在弱Benson真有效意义下有效元应满足Lagrange乘子型的必要及充分条件,并用这一结果建立了多目标主从非凸向量集值优化在弱Benson真有效意义下最优解的Lagrange乘子型充要条件。

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

The problem of sub-Riemannian geodesics is a Lagrange problem with constraint. How to describe the constraint condition "γ'∈ D, a. e." is a difficult problem.

次黎曼测地线问题是变分学中的一个有约束的Lagrange问题,但在变分的过程中有个难点―如何推出约束条件&γ'∈D,在上几乎处处成立&的解析式。

第1/5页 1 2 3 4 5 > 尾页
推荐网络例句

I didn't watch TV last night, because it .

昨晚我没有看电视,因为电视机坏了。

Since this year, in a lot of villages of Beijing, TV of elevator liquid crystal was removed.

今年以来,在北京的很多小区里,电梯液晶电视被撤了下来。

I'm running my simile to an extreme.

我比喻得过头了。