英语人>网络例句>Jacobi method 相关的网络例句
Jacobi method相关的网络例句

查询词典 Jacobi method

与 Jacobi method 相关的网络例句 [注:此内容来源于网络,仅供参考]

Nonlinear flexural wave equation is solved by the Jacobi elliptic function expansion method. Two kinds of exact periodic solutions of the nonlinear equations are obtained, that is, the shock wave solution and the solitary wave solution. The necessary condition for existence of exact periodic solutions, shock solution and solitary solution is discussed, which is consistent with the qualitative analysis.

利用Jacobi椭圆函数展开法,对该非线性方程进行求解,得到了非线性波动方程的准确周期解及相对应的孤波解和冲击波解,讨论了这些解存在的必要条件,这与定性分析的结果完全相同。

Using algebraic methods which include extended Tanh-method,some new solitary solutions to the DBM and Log-DBM equation,such as singular solitary solutions,double singular peakon solitary wave solutions,double solitary wave solution with peakon and singular periodic solitary wave solutions are obtained..With the aid of an auxilitary function combined with the elliptic integral of the first kind,periodic solitary solution,singular and periodic singular solitary solutions can be obtained.

第三章利用扩展的Jacobi椭圆函数展开法研究了方程,并给出ZK-MEW方程的Jacobi椭圆函数解,特别的,当模数m→0和m→1时,其中一部分解退化为三角函数解和孤立波解;其次使用sn-cn拟设法,研究了K(k,s,1)方程,得到了k=s=3时的新的精确解,并在模数m→0和m→1时得到了丰富的三角函数和孤立波解。

By integral transformation of basic equations, the stress and displacement expressions with unknown coefficients of elastic and viscoelastic materials were obtained in Laplace domain respectively, and introducing dislocation density functions, the singular integral equations were got according to the boundary conditions and interface connection conditions, further adopting Gauss integration and Gauss-Jacobi integration formula, the problem was reduced to algebraic equations, then it can be solved with the method of collocation dots in Laplace domain. Finally, the time response of dynamic stress intensity factor was calculated with the inverse Laplace integral transformation.

采用积分变换方法,得到Laplace域内弹性和粘弹性材料的应力和位移的含未知系数的表达式;引入位错密度函数,并通过边界条件和界面连接条件,导出反映裂纹尖端奇异性的奇异积分方程组,采用Gauss积分,并运用Gauss-Jacobi求积公式化奇异积分方程组为代数方程组,利用配点法进行求解;最后经过Laplace逆变换,求得动态应力强度因子的时间响应。

For the plane wave of laser without pulse shape, we derive the express of electron trajectory by the relative Lorentz and energy equations. Note that the orbit of electron becomes a "fat-8" in the average rest frame. For the plane wave of Gaussian laser, we may know that, through relative Hamilton-Jacobi equation, electrons are accelerated in the front of pulse and decelerated backward. Whereas for the non-plane wave of Gaussian laser, we solve the Lorentz and energy equations by fourth order Runge-Kutta method.

对于无脉冲形状的激光平面波是从考虑了相对论效应的Lorentz方程和能量方程出发,得到了电子的运动轨迹方程表达式,在纵向平均速度参照系下该电子的轨迹呈现"8"字形;对于高斯型单色激光平面波是从相对论Hamilton-Jacobi方程出发,得到激光平面波在脉冲前沿加速电子而脉冲后沿减速电子,电子能量增益为零;而对于高斯型单色激光非平面波是从拉格朗日运动方程和能量方程出发,通过四阶Runge-Kutta法数值求解,得到电子在纵向有质动力、横向电场作用下加速电子,最后在强大的横向有质动力作用下从脉冲侧面散射出去,可以获得很大能量增益本文得到了相应的电子瞬时动量解析表达式。

Computer simulation shows that, compared with the iterative and the Jacobi methods, the QR method is more accurate and stable.

在经由模拟测试后发现,相较於迭带法、Jacobi 法,QR演算法具备较佳的误差分布及较稳定的收敛性。

The domain decomposition method of Jacobi type for the quasivariational inequality system is proposed and the corresponding monotone convergence theory is established.

然后提出了上述拟变分不等式组的Jacobi型区域分解法,并建立相应的收敛性理论。

The paper presents an implicit integration algorithm based on Jacobi iteration method, which stably updates the state of n mass points in O time.

本文提出了一种基于Jacobi迭代的隐式积分求解算法来突破这一瓶颈。

In spherical polar coordinates, DRSC potential have supersymmetry and shape invariance for θ and r coordinates. By using the method of supersymmetry and shape invariance, exact bound state solutions of Schrodinger equation with double ring-shaped Coulomb potential are presented. The normalized angular wave function expressed in terms of Jacobi polynomials and the normalized radial wave function expressed in terms of the Laguerre polynomials are presented. Energy spectrum equations are obtained.

本文研究了双环形Coulomb势Schrdinger方程的束缚态精确解,所采用的方法是首先对双环形Coulomb势的Schrdinger方程在球坐标系中进行分离变量,得到相应的角向方程和径向方程;证明双环形Coulomb势在角向和径向具有超对称性和形不变性;根据超对称性和形不变性的性质,获得了角动量量子化条件和束缚态的能谱方程,并将归一化角向波函数用Jacobi多项式表示,将归一化径向波函数用Laguerre多项式函数表示。

We prove under the local error bound condition that the Levenberg-Marquardt method with this parameter converges quadratically to a solution of the system of the equations by the technique of the singular value decomposition of the Jacobi matrix.

利用Jacobi矩阵的奇异值分解技巧,我们证明了此时在局部误差界条件下,Levenberg-Marquardt方法产生的迭代点列局部二阶收敛于方程组的某个解。

The relationships between the eigenvalues of Jacobi iteration matrix and the block AOR iteration matrix make a very important role in our analysis. Then we prove some sufficient conditions for the semiconvergence of the block AOR method.

利用块AOR迭代矩阵和相应的块Jacobi迭代矩阵的特征值之间所存在的关系,我们证明了求解奇异p-循环线性方程组的块AOR迭代法半收敛的一些充分件。

第3/7页 首页 < 1 2 3 4 5 6 7 > 尾页
推荐网络例句

Do you know, i need you to come back

你知道吗,我需要你回来

Yang yinshu、Wang xiangsheng、Li decang,The first discovery of haemaphysalis conicinna.

1〕 杨银书,王祥生,李德昌。安徽省首次发现嗜群血蜱。

Chapter Three: Type classification of DE structure in Sino-Tibetan languages.

第三章汉藏语&的&字结构的类型划分。