查询词典 Hamiltonian
- 与 Hamiltonian 相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In many physical situations, the Hamiltonian of the system is composed of an unperturbed Hamiltonian and a perturbation.
在很多物理情况下,系统的哈密顿量由未扰动哈密顿量与扰动势两部分所组成。
-
The generating function method is applied to the study of integrability structure of these finite-dimensional systems, by which it is very convenient to prove the involutivity of integrals of motion.
上面所提到的这些连续的和离散的2+1维可积模型被分解成所导出的常微分方程的Hamiltonian系统或常微分方程的Hamiltonian系统以及辛映射所产生的离散流。
-
In 1997, Lenhard Ng Michelle Schultz[1] gave the definition of k -ordered Hamilton graphs,namely, let G be a Hamiltonian graph of order n,and for a positive integer k with k ≤n, we say that G is k -ordered if for every sequence S : v1 , v2,Λ,vk of k distinct vertices, there exists a hamiltonian cycle C of G such that the vertices of S are encountered on C in the specified order.
年, Lenhard Ng Michelle Schultz[1]给出k-可序( k ?ordered)哈密尔顿图的定义,即设G是n阶哈密尔顿图,对于正整数k,称G 是k -可序图,如果对于任意给定的k 个互不相同的顶点的有序子集S =( v1 ,v2,Λvk)( 2≤k ≤n),存在G中的哈密尔顿圈C 包含S 且不改变其中元素的顺序。2000 年,R.J。
-
In the study of the stochastic chaos in simple pendulum, the random Melnikov process is derived and the mean-square criterion is used to determine the threshold amplitude of the bounded noise excitation for the onset of the chaos or random chaos in the system. For the coupled simple pendulum and harmonic oscillator, the Melnikov function is used to determine the condition for the onset of chaos in the case of Hamiltonian perturbations. In the case of non-Hamiltonian perturbation, the generalized random Melnikov process and mean-square criterion are used to determine the threshold amplitude of the bounded noise for the onset of random chaos.
在随机混沌研究中,应用随机Melnikov过程的均方准则研究了单摆在有界噪声激励下发生混沌或随机混沌时有界噪声激励的临界幅值;对于耦合的单摆-谐振子系统,先用Melnikov函数研究了在哈密顿扰动下发生混沌的必要条件;然后用推广的随机Melnikov过程方法研究了在非哈密顿扰动下发生随机混沌的必要条件;用最大Lyapunov指数及Poincaré截面方法结果与上述理论结果作了对比。
-
Chapter four studies the chaotic responses in a system consisting of simple pendulum and harmonic oscillator under bounded noise excitation. Firstly, the Melnikov function of the two-degree-of-freedom system under Hamiltonian perturbation is derived. The essential condition of the autonomous system for the probable onset of chaos is obtained, the Poincare maps of the system under small Hamiltonian perturbation and the effect of increasing perturbation on the Poincare maps are studies. Then for the non-autonomous system under damping and harmonic or bounded noise excitation, the largest Lyapunov exponent and Poincare maps are calculated. From the analysis of the largest Lyapunov exponent, the critical criterion for the onset of chaos, and the conclusion that the threshold of bounded noise amplitude for the onset of chaos in the system increases as the intensity parameter of Wiener process increases are obtained. The result from the analysis of Poincare maps is in agreement with that obtained from the Largest Lyapunov exponent. The effect of varying damping coefficient and intensity parameter of Wiener process is also analyzed.
第四章研究了有界噪声激励下的两自由度单摆—谐振子系统的混沌运动,首先推导了该两自由度系统仅在Hamilton扰动下的Melnikov函数,得到该自治系统可能产生混沌的必要条件;研究了该系统在小的Hamilton扰动和增大摄动情形下的Poincare截面;然后对有阻尼、谐和或有界噪声激励下的非自治系统数值计算了其最大Lyapunov指数和Poincare截面;从Lyapunov指数分析得到了这个两自由度系统产生混沌运动的临界条件及产生混沌的临界激励幅值随Wiener过程强度参数值的增大而增大的结论,Poincare截面分析的结果亦符合Lyapunov指数分析的结论;研究了Wiener过程强度参数、阻尼系数变化对Poincare截面的影响。
-
By using this newly developed index theory,we investigate the multiplicity of subharmonic solutions for nonlinear Hamiltonian systems and second order Hamiltonian systems.
应用这一指标理论,讨论Hamilton系统与二阶Hamilton系统次调和解的存在性。
-
In this paper we separate the Hamiltonian into three parts: a spherical symmetry Hamiltonian; a z-component of the angular momentum operator, and a non-spherical symmetric potential as the perturbation operator, and provide a propose method by separating the potential containing squared magnetic field B^2 into two parts spherical symmetric and non-spherical symmetric ones so that the first-order energy correction due to the non-spherical symmetric potential is zero, and the second-order correction due to B^2 can be obtained by a simple variational method.
采用变分法和微扰法相结合的方法,把高强度磁场中氢原子的哈密顿H分为三部分:球对称哈密顿;z分量角动量算符相应部分和非球对称势微扰,并用一种特别规定的分解法将哈密顿H中含磁场平方项的势能分解为球对称与非球对称两部分,且使非球对称部分引起的一级修正能量值为零,并采用一种简便的变分法直接求出B^2对能级的二级修正值。
-
It is also pointed out that an n-mode boson coupled quadratic Hamiltonian can be diagonalized by a "negative unitary" matrix which is an element of complex symplectic group SP(2n,c),and an n-mode fermion coupled quadratic Hamiltonian can be diagonalized by a unitary matrix which is an element of complex fermion group F(2n,c).
并且指出,对于n模玻色子耦合二次型哈密顿量,通过一个负幺正矩阵它是复辛群SP(2n,c的元素可以把它对角化;对n模费米子耦合二次型哈密顿量,通过一个幺正矩阵它是复费米群F(2n,c的元素可以把它对角化。
-
The symplectic schemes have the ability to preserve the global symplectic structure of the phase space for a Hamiltonian system. They have substantial benefits in numerical computation for Hamiltonian system, especially in long-term simulations.
辛算法正是保持Hamilton系统内在性质的一种新型数值方法,该算法在长时间的数值计算中,具有常见数值方法无可比拟的计算优势。
-
In a word, a new method that theoretically calculates the relativistic corrections and the fine structure of the energy levels in two-electron atom, including the atomic Hamiltonian expressed by spherical tensors, the calculation of the angular matrix elements and the summations over spin of the various interactions in the atomic Hamiltonian, and the approximate calculation of the radial matrix elements, has been provided in this thesis.
总之,本文为双电子原子能级的相对论修正和精细结构的理论计算提供了一种新的方法,包括原子哈密顿算符的球张量表示方法、原子哈密顿中各种相互作用项的角向矩阵元和自旋求和的计算方法,以及径向矩阵元的近似计算方法。
- 推荐网络例句
-
Neither the killing of Mr Zarqawi nor any breakthrough on the political front will stop the insurgency and the fratricidal murders in their tracks.
在对危险的南部地区访问时,他斥责什叶派民兵领导人对中央集权的挑衅行为。
-
In fact,I've got him on the satellite mobile right now.
实际上 我们已接通卫星可视电话了
-
The enrich the peopling of Deng Xiaoping of century great person thought, it is the main component in system of theory of Deng Xiaoping economy, it is a when our country economy builds basic task important facet.
世纪伟人邓小平的富民思想,是邓小平经济理论体系中的重要组成部分,是我国经济建设根本任务的一个重要方面。