- 更多网络例句与黎曼积分相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The paper states the distinctions between Riemann integral and Lebesgue integral from the aspects of the definition of integral,the continuity of integrable function,the additivity of integral,integral limitation theorems and Newton-Leibnitz formula.
从积分的定义,可积函数的连续性,积分的可加性,积分极限定理,牛顿-莱布尼兹公式五个方面阐述了黎曼积分与勒贝格积分的区别。
-
And because of the limitations of Riemann Integration,it can only be used for continuous function.
而由于黎曼积分具有局限性,黎曼积分只能用于连续函数类的积分。
-
Riemann integral can not be used in every limited function to get its definite integral.
因此,并不是每一个牛顿不定积分都可进行黎曼积分,并不是每个黎曼积分都存在牛顿不定积分,黎曼积分也并不能对每一个有界函数求定积分。
-
Say from the angle of mathematics, This software mainly plays to show the integral calculus of Bernhard Riema , together two heavy integral calculuses of a function.
从数学的角度说,本软件主要将演示黎曼积分、齐次函数的二重积分。
-
This software carried out the calculation of the integral calculus of Bernhard Riema with draw the function sketch of the Bernhard Riema integral calculus function and together the function that two calculation and integral calculus zone diagrams of the heavy integral calculuses of a function draw.
本软件将实现黎曼积分的计算与绘制黎曼积分函数的函数图形、齐次函数的二重积分的计算与积分区间图的绘制的功能。
-
Here we discuss the limitations of the Riemann integral and the greater scope offered by the Lebesgue integral.
在这一章里我们讨论黎曼积分的限制以及勒贝格积分提供的更大的可能性。
-
Firstly,the article theoretically expounds the superiority of Lebesgue Integral ,then through the detailed cases analyzes its superiority shown in the practical application compared to Riemann Integral.
文章首先从理论上阐明勒贝格积分的优越性,然后通过具体实例详细探讨勒贝格积分相对于黎曼积分,在实际应用中体现出的巨大优越性。
-
After constrcting the perfective space , prove that this space is just the space of lebesgue integratiable function , thus explain that lebesgue integral is the form of the perfective riemann integral
在构造了完备化空间之后,证明了该空间就是勒贝格可积函数空间,从而说明了黎曼积分的完备化形式是勒贝格积分。
-
As defined above, the Riemann integral avoids this problem by refusing to integrate .
一个更好的途径是抛弃黎曼积分而采用勒贝格积分勒贝格积分。
-
It will also be capable of evaluating definite integrals and Riemann sums.
同时,它还可处理定积分和黎曼积分。
- 更多网络解释与黎曼积分相关的网络解释 [注:此内容来源于网络,仅供参考]
-
Riemann lower integral:黎曼下积分
黎曼问题|Riemann problem | 黎曼下积分|Riemann lower integral | 黎曼映射定理|Riemann mapping theorem
-
riemann mapping theorem:黎曼映射定理
riemann integral 黎曼积分 | riemann mapping theorem 黎曼映射定理 | riemann matrix 黎曼矩阵
-
riemann function:黎曼函数
ricci identity 李奇恒等式 | riemann function 黎曼函数 | riemann integral 黎曼积分
-
riemann integral:黎曼积分
勒贝格积分(Lebesgue Integral)便 是从黎曼积分(Riemann Integral)的原有框架发展而来的. 由于介绍勒贝格积分须涉及很多测度论(Measure Theory)的专门概念和知识(例如「测度空间」Measure Space、「可测函数」Measurable Function等),
-
riemann stieltjes integral:黎曼 斯蒂尔斯积分
riemann sphere 黎曼球面 | riemann stieltjes integral 黎曼 斯蒂尔斯积分 | riemann surface 黎曼面
-
riemann stieltjes integral:黎曼-斯蒂尔切斯积分
黎曼-罗赫定理|Riemann-Roch theorem | 黎曼-斯蒂尔切斯积分|Riemann-Stieltjes integral | 黎曼-希尔伯特问题|Riemann-Hilbert problem
-
Riemann upper integral:黎曼上积分
黎曼流形|Riemannian manifold | 黎曼上积分|Riemann upper integral | 黎曼问题|Riemann problem
-
riemann's integral:黎曼积分
best approximation 最佳逼近 | riemann's integral 黎曼积分 | vindication 证明
-
Riemannian geometry:黎曼几何[学]
黎曼积分|Riemann integral | 黎曼几何[学]|Riemannian geometry | 黎曼假设|Riemann hypothesis
-
Riemannian geometry:黎曼几何[学]
黎曼积分||Riemann integral | 黎曼几何[学]||Riemannian geometry | 黎曼假设||Riemann hypothesis