- 更多网络例句与高阶导数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
And that method is different from the adding base point method and impact method from importing derivatives of higher order.
他与增加基点数目的方法和引入高阶导数的紧致方法不同,是微分方程差分近似高精度化的一种新方法。
-
As to its computing methods, this paper synthesizes six kinds, they are: utilizing a general integral method of complex function directly; utilizing Cauchy integral theorem; utilizing Cauchy integral formula; utilizing Cauchy high-level differential coefficient; utilizing Cauchy residue theorem; utilizing the residual of logarithm.
关于周线积分的计算方法,本文综合了六种,它们分别是:直接利用一般的复变函数积分的方法;利用柯西积分定理;利用柯西积分公式;利用柯西高阶导数公式;利用柯西留数定理;利用对数留数。
-
Based on the chain rule techniques, AD seeks first or higher order derivatives of functions represented by a group of dependent program procedures and extended files, the so-called original model, through a number of code-to-code transformings under a series of differential rules.
基于链式求导法则的自动微分方法通过改写原程序模式代码,依赖机器自动构造不同的微分模式,来分析求解函数的一阶或高阶导数,即在一系列预定微分规则下对不同程序对象做从代码到代码的自动微分转换。
-
Numerical differentiation is that derivative value of a function at a certain point is approximately solved in discrete method.
中文摘要:数值微分就是用离散方法近似地求出函数在某点的导数值,关于数值微分已有许多求解方法,但这些方法都有各自的局限性,并且关于高阶导数近似逼近的方法研究相对较少。
-
The Taylor formula holds the very important status in the differential calculus, especially in solves in some concrete problems to have the extremely important application, for instance the proof inequality, the judgment improper integral collects the divergence, asks the function the limit, asks the function the higher order derivative, determines certain complex progressions to collect the divergence, solves certain differential equation, as well as approximate calculation in and so on application, therefore this article will do the thorough research to these seven aspects.
摘 要:泰勒公式在微分学中占有非常重要地地位,尤其在处理1些具体的茄题中有10分重要的应用,比如证明不等式,判断广义积分的敛散性,求函数的极限,求函数的高阶导数,判定某些复杂级数的敛散性,求解某些微分方程,以及近似计算等中的应用,因此本文将对这七个方面做深入的研究。关键词:泰勒公式;不等式;广义积分;极限;高阶导数;复杂级数;微分方程
-
This paper has utilized the mathematic inductive method and Leibniz theorem to study the unity advanced derivation of complex-special Function and original function, acquired their united expression.
用数学归纳法和莱布尼兹公式对一类复杂函数的高阶导数与原函数的统一性进行了研究,获得了该类函数的高阶导数及原函数的统一表述公式。
-
In this paper we will mainly study the gauge fixing Yang-Mills heat flow of a principal bundle For a principle bundle with a compact seme-simple Lie group as its structure group over a compact Riemannian manifold without boundary, the evolutions of the curvature and its higher derivatives under the flow above will be derived, and the energy inequality and the Bochner type estimates will be obtained.
中文摘要:本论文主要讨论主丛上的规范固定Yang-Mills热流我们在紧致无边黎曼流形上的以半单紧致李群为结构群的主丛上,推导了在规范固定Yang-Mills热流下曲率及其高阶导数的演化方程,得到了该热流的能量不等式和Bochner估计,由此可推出单调性公式和小作用量正则性,以及曲率各阶导数的局部一致估计。
-
In this paper we will mainly study the gauge fixing Yang-Mills heat flow of a principal bundleFor a principle bundle with a compact seme-simple Lie group as its structure group over a compact Riemannian manifold without boundary, the evolutions of the curvature and its higher derivatives under the flow above will be derived, and the energy inequality and the Bochner type estimates will be obtained. Then, the monotonicity formula and the small action regularity theorem can be proved. We will give the locally uniform estimates for the higher derivatives of the curvature.
本论文主要讨论主丛上的规范固定Yang-Mills热流我们在紧致无边黎曼流形上的以半单紧致李群为结构群的主丛上,推导了在规范固定Yang-Mills热流下曲率及其高阶导数的演化方程,得到了该热流的能量不等式和Bochner估计,由此可推出单调性公式和小作用量正则性,以及曲率各阶导数的局部一致估计。
-
We constructed a finite volume scheme of fifth order Hermite type with high accuracy for twopoint boundary value problems, choosing trial and test spaces as the fifthorder finite element space of Hermite type and the piecewise linear function space respectively. We didn't use higher derivatives as interpolation conditions, which is the same as the thirdorder finite element of Hermite type, but the scheme obtained had higher accuracy.
构造求解两点边值问题的一种Hermite型五次元高精度有限体积法,其中试探函数空间取Hermite型五次有限元空间,与Hermite型三次元相同,未引入更高阶导数作为插值条件,检验函数空间取分段线性函数空间,这样构造的格式求解精度更高。
-
At first, this thesis gives right calaculation results of derivative of Daubechies scaling function, the determine fashion of continuity is rendered.
本论文首先推导了Daubechies尺度函数导数或高阶导数的正确计算结果,给出了它的连续性的判定方式。
- 更多网络解释与高阶导数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
arithmetic progression of higher order:高阶等差数列
高阶导数|derivative of higher order | 高阶等差数列|arithmetic progression of higher order | 高阶逻辑|high order logic
-
derivative of a vector:向量导数
derivative of a distribution 分布导数 | derivative of a vector 向量导数 | derivative of higher order 高阶导数
-
derivative of higher order:高阶导数
derivative of a vector 向量导数 | derivative of higher order 高阶导数 | derivative of n th order n阶导数
-
of exponential function:指数函数之导数
domain of :导数之定义域 | of exponential function :指数函数之导数 | higher :高阶导数
-
higher commutator:高阶换位子;高阶换位
高速进位 high speed carry | 高阶换位子;高阶换位 higher commutator | 高阶导数;高阶微商 higher derivative
-
higher derivative:高阶导数
higher derivation 高阶求导 | higher derivative 高阶导数 | higher difference 高阶差分
-
higher derivative:高级衍生物,高阶导数,高阶微商
higher critical velocity 高临界流速,超临界速度 | higher derivative 高级衍生物,高阶导数,高阶微商 | higher dimentional space 高维空间
-
higher derivative:高阶导数;高阶微商
高阶换位子;高阶换位 higher commutator | 高阶导数;高阶微商 higher derivative | 高阶差分 higher difference
-
higher order derivative:高阶导数
hexagon 六边形 | higher order derivative 高阶导数 | Hindu-Arabic numeral 阿刺伯数字
-
nth derivative:高阶导数
三阶导数 third derivative | 高阶导数 nth derivative | 莱布尼茨公式 Leibniz formula