- 更多网络例句与高斯求积公式相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The quadrature formula about surface integral on any quadrilateral element is deduced by means of isoparametric transformation and bilinear interpolation.
通过对三维有界区域的边界曲面作四边形网格剖分,用有限元方法处理高斯公式中的曲面积分,由等参变换及双线性插值导出任意四边形单元上曲面积分的数值求积公式。
-
Boley and Golub used Gauss quadrature formula to solve the inverse problem, but I used other different methods and thoughts. I obtained a new decomposition form of orthogonal matrix consisted by the unit eigenvectors of Jacobi matrix and found the direct relations between the first row and the orther rows of this orthogonal matrix.
Boley和Golub的算法是用高斯求积公式,而本人另辟蹊径,推出了关于Jacobi矩阵单位特征向量组成的正交阵的一种分解形式,并找到此正交阵第一行和其它行的直接联系,由此避免了通过求特征多项式计算尾主子阵的特征值,得到了新的稳定解法。
-
Remove row and column' and 'put a big number' have been used for the first boundary;a continuous Regional Identification Function is used on the basis of non-variant nodal virtual flux method for the free surface boundary;Gauss formula is used to make the curved surface integral of the free surface boundary transformed as the difference between volumn integral and other curved surface integral to calculate the integral item on boundaries, which avoiding finding the position of free surface, while the continuous Regional Identification Function is applied to calculate volumn integral and surface integral;Crout and PCG method is used for solusion.
对于已知水头边界,采用"去行去列法"和"置大数法"进行处理;对于自由面穿过的单元,在固定网格节点虚流量法的基础上,引入连续的区域识别函数;对于非稳定渗流中自由面边界积分项,采用高斯公式将求自由面的面积分转化为求体积分与其他面积分之差,避免了求自由面的具体位置,同时在计算体积分和面积分时采用连续的区域识别函数;在解法上,采用直接解法和PCG法。
-
Report : Programming Environment : Newton MATLAB7 K polynomial interpolation procedures to achieve Romberg of Quadrature program Gaussian out PCA Elimination of the program.
计算方法实验报告:编程环境:MATLAB7.0 牛顿K次插值多项式的程序实现龙贝格求积公式的程序实现高斯列主元消去法的程序实现。
-
Report : Programming Environment : Newton MATLAB7 K polynomial interpolation procedures ...
计算方法实验报告:编程环境:MATLAB7.0 牛顿K次插值多项式的程序实现龙贝格求积公式的程序实现高斯列主元消去法的程序实现。
-
The author successfully applies the Gauss-type integral formula to the numerical solution to the constant differential equation and creates the Gauss-type implicit Runge-Kutta Method of which the accuracy of order 4 and degree 7 is already equivalent to that of the RK method with order 10 and degree 8 that is in common use.
成功地将高斯型求积公式用于常微分方程的数值解中,得到了高斯型隐式龙格库塔方法,4级7阶 GRK 法的精度已与目前较为常用的10级8阶 RK 法的精度相当。
-
As using Gaussian numerical integration, this paper uses Gauss-Legendre quadrature formula instead of Gauss-Chebyshev quadrature formula in order to avoid the precision decrease due to the singularity of cut-off error at both end points.
在利用高斯型求积公式进行数值积分时,本文采用高斯—勒让德求积公式取代高斯一切比雪夫求积公式,以避免因截断误差在端点出现奇异而导致的精度下降。
-
Remove row and column' and 'put a big number' have been used for the first boundary;a continuous Regional Identification Function is used on the basis of non-variant nodal virtual flux method for the free surface boundary;Gauss formula is used to make the curved surface integral of the free surface boundary transformed as the difference between volumn integral and other curved surface integral to calculate the integral item on boundaries, which avoiding finding the position of free surface, while the continuous Regional Identification Function is applied to calculate volumn integral and surface integral;Crout and PCG method is used for solusion.
对于已知水头边界,采用&去行去列法&和&置大数法&进行处理;对于自由面穿过的单元,在固定网格节点虚流量法的基础上,引入连续的区域识别函数;对于非稳定渗流中自由面边界积分项,采用高斯公式将求自由面的面积分转化为求体积分与其他面积分之差,避免了求自由面的具体位置,同时在计算体积分和面积分时采用连续的区域识别函数;在解法上,采用直接解法和PCG法。
-
Report : Programming Environment : Newton MATLAB7 K polynomial interpolation procedures to achieve Romberg of Quadrature program Gaussian out PCA Elimination of the program.
详细说明:计算方法实验报告:编程环境:MATLAB7.0 牛顿K次插值多项式的程序实现龙贝格求积公式的程序实现高斯列主元消去法的程序实现。
- 更多网络解释与高斯求积公式相关的网络解释 [注:此内容来源于网络,仅供参考]
-
divided difference:均差
第二节 拉格朗日(Lagrange)插值一、均差(Divided Difference)及其性质第二节 高斯(Gauss)消元法一、雅可比(Jacobi)迭代法第五节 高斯(Gauss)型求积公式一、欧拉(Euler)方法第三节 龙格一库塔(Runge-Kutta)法二、阿达姆斯(Adams)显式与隐式方法
-
Gauss quadrature formula:高斯求积公式
Gauss quadrature 高斯求面积法 | Gauss quadrature formula 高斯求积公式 | Gauss random noise 高斯随机噪声
-
gaussian quadrature formula:高斯求积公式
gaussian process 高斯过程 | gaussian quadrature formula 高斯求积公式 | gaussian sum 高斯和
-
gaussian sum:高斯和
gaussian quadrature formula 高斯求积公式 | gaussian sum 高斯和 | gegenbauer polynomial 格根包尔多项式