- 更多网络例句与面积分相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The boundary contour formulations of evaluatingstresses from the Somigliana stress identity are derived for 2-D problemswith quadratic boundary elements.The boundary contour method basedon the traction boundary integral equation is further discussed.Elasticproblems are first solved using the traction boundary contour method.Amixed collocation of the displacement boundary contour formulation andtraction boundary contour formulation is given.(4)The dual boundarycontour method is developed for the analysis of crack problems.
3建出了Somigliana应力积分式的二维和三维问题的边界轮廓法理论;给立了二维问题由Somigliana应力积分式计算应力的二次形函数的边界轮廓法方程,进而给出了基于面力边界积分方程的边界轮廓法;提出了一种以位移边界轮廓法方程与面力边界轮廓法方程混合配置的方案,首次实现了用两种积分方程相结合来求解弹性力学问题。
-
The subsection integral is used to get a simple function at first in the numerical calculation, and boundary integral is realized by gauss integral on each panel and line, then the complexity and isstability as a result of the high frequency surge function can be avoided.
数值计算中,首先采用分部积分对被积函数进行简化处理,然后采用高斯积分实现面元和线元上的积分,避免了被积函数为高频振荡函数所带来的数值计算的复杂性和不确定性。
-
In the computation of aerodynamic forces, the present work is based on the work of Morino et al., but the following aspects are improved:(1) In computing the steady transonic aerodynamic load, the steady transonic nonlinear integral equation is solved by relaxation-iteration method in this thesis, instead of solving the time dependent transonic nonlinear integral equation, so that the computing time is saved greatly;(2) The influence coeifficients represented by volume integral are transformed to surface integral by using the Gaussian Theorem, so the analytical form of these coeifficients can be obtained and this leads to be more convenient to analyse and compile computer program;(3) The shock capturing method is used in every time step in present work, no shock moving term is added in the integral equation, so that it is more convenient and simpler to treat.
在气动力计算方面,本文基于Morino等人的工作,作了如下几方面的改进:(1)在计算定常跨音速流场(作为非定常绕流计算的初场)时,本文采用松驰迭代法直接求解跨音速定常非线性积分方程,而不是采用时间相关法求解非定常非线性积分方程,这样大大节省了计算机时;(2)将以体积分形式出现的影响系数化为面积分,并获得解析公式,这样便于分析和编写程序;(3)对运动的激波,本文通过在每一个时间步长上采用激波捕捉法而得到,而不是在积分方程中附加激波运动项,因而处理起来简单方便得多。
-
Based on the fundamental solution of two perfectly bonded elastic halfspaces, the boundary integral equation method is used to reduce the problem to a hypersingular integral equation in which the unknown function is the crack opening displacem...
首先根据双材料空间的弹性力学基本解,使用边界积分方程方法,在有限部积分的意义下导出了以裂纹面位移间断为未知函数的超奇异积分方程,并为其建立了数值法。
-
Triple integral and surface integral are first simplified through the alternation of integral variable and integral extent and then calculated in other ways so that the two kinds of integral calculation can be made simple.
探讨了轮换对称性在积分计算中的应用,利用积分变量与积分区域的轮换对称性先简化重积分及面积分,然后再采用其它方法来计算,使这两类复杂的积分计算变得简单。
-
The residual parts are surface integrations whose integrands are the products of the scalar Green's function and fields or their derivatives. The high order singularity of integrands in the integral equation is reduced to one order, making for program implementation.
剩下的部分是关於标量Green函数与场强值或与它们的一阶导数值乘积的面积分,这样积分方程的被积函数高阶奇异性被降到一阶,有利於计算机的程序实现。
-
For the regular curves, we find two Killing fields for the purpose of integrating the structural equations of the p-elastic curves and express the p-elastica by quadratures in a system of cylind...
对于正则曲线的情形,我们发现了两个用于求解p-弹性曲线的结构方程的Killing向量场并用积分将p-弹性曲线在一个柱面坐标系中表示出来,而对仿射星形曲线的情形,我们用积分方法解出了欧拉-拉格朗日方程,利用Killing向量场及线性李代数s1(2,R)、s1(3,R)和s1(4,R)的分类将高阶结构方程降为一阶线性方程,因此我们用积分完全解出了中心仿射p-弹性曲线。
-
For the regular curves, we find two Killing fields for the purpose of integrating the structural equations of the p-elastic curves and express the p-elastica by quadratures in a system of cy...
对于正则曲线的情形,我们发现了两个用于求解p-弹性曲线的结构方程的Killing向量场并用积分将p-弹性曲线在一个柱面坐标系中表示出来,而对仿射星形曲线的情形,我们用积分方法解出了欧拉-拉格朗日方程,利用Killing向量场及线性李代数s1(2,R)、s1(3,R)和s1(4,R)的分类将高阶结构方程降为一阶线性方程,因此我们用积分完全解出了中心仿射p-弹性曲线。
-
For the regular curves, we find two Killing fields for the purpose of integrating the structural equations of the p-elastic curves and express the p-elastica by quadratures in a syste...
对于正则曲线的情形,我们发现了两个用于求解p-弹性曲线的结构方程的Killing向量场并用积分将p-弹性曲线在一个柱面坐标系中表示出来,而对仿射星形曲线的情形,我们用积分方法解出了欧拉-拉格朗日方程,利用Killing向量场及线性李代数s1(2,R)、s1(3,R)和s1(4,R)的分类将高阶结构方程降为一阶线性方程,因此我们用积分完全解出了中心仿射p-弹性曲线。
-
In addition,the recursive summation method for programming the kirchhoff's integral formulation is discussed in detail.
详细论述了将Kirchhoff积分公式程序化的循环累加法;并着重分析了不同积分面及其网格划分对积分精度的影响。
- 更多网络解释与面积分相关的网络解释 [注:此内容来源于网络,仅供参考]
-
areal integral:面积分
面积元素 areal element | 面积分 areal integral | 面积速度 areal velocity
-
fundamental theorem of calculus:微积分基本定理
在学习一元微积分时,我们都会学到一条微积分基本定理(Fundamental Theorem of Calculus). 后来在学多元微积分(又称向量微积分)时,我们会学到各种新的积分,如二重积分、三重积分、曲线积分(Line Integral)、面积分(Surface Integral)以及更多积分定理,
-
integral surface:面积分
积分时间 integral time | 面积分 integral, surface | 时积积分绝对误差准则 integral-of-time-multiplied absolute-error criterion
-
surface integral:面积分
后来在学多元微积分(又称向量微积分)时,我们会学到各种新的积分,如二重积分、三重积分、曲线积分(Line Integral)、面积分(Surface Integral)以及更多积分定理,包括格林定理(Green's Theorem )、高斯定理(Gauss' Theorem)和斯托克斯定理(Stokes' Theorem),
-
surface integral:面积分,球面积分
surface induction 表面感应 | surface integral 面积分,球面积分 | surface ionization 表面电离
-
surface integral:面积分,球面积分=>面積分
surface insulation 表面绝缘 | surface integral 面积分,球面积分=>面積分 | surface inversion 地面逆温
-
line integral:线积分
后来在学多元微积分(又称向量微积分)时,我们会学到各种新的积分,如二重积分、三重积分、曲线积分(Line Integral)、面积分(Surface Integral)以及更多积分定理,包括格林定理(Green's Theorem )、高斯定理(Gauss' Theorem)和斯托克斯定理(Stokes' Theorem),
-
line integral:曲线积分
后来在学多元微积分(又称向量微积分)时,我们会学到各种新的积分,如二重积分、三重积分、曲线积分(Line Integral)、面积分(Surface Integral)以及更多积分定理,包括格林定理(Green's Theorem )、高斯定理(Gauss' Theorem)和斯托克斯定理(Stokes' Theorem),
-
surface harmonics:面低函数
surface element 面元素 | surface harmonics 面低函数 | surface integral 面积分
-
conoidal solution:角面解
角面积分 conoid integral | 角面解 conoidal solution | 余法线 conormal