- 更多网络例句与非退化的相关的网络例句 [注:此内容来源于网络,仅供参考]
-
A nondegenerate simplex is one for which the set of edges adjacent to any vertex in the simplex forms a basis for the space.
一个非退化的单纯形是与任意顶点相连的边集组成空间的基。
-
In section 3 ,we will introduce bilinear form B on Lie colour algebra L. is called quadratic if B is color symmetric .non-degenerate and invariant .In this case ,B is called an invariant scalar product on L .
第三部分介绍了具有双线性型B的李color代数L,如果B是color对称的,非退化的和color不变的,则称是二次李color代数,B则称为不变数量积,给出了理想非退化的定义。
-
Ringel realized positive parts of semisimple Lie algebras in the framework of Ringel-Hall algebras. The main result of this thesis is to build a geometric and topological model over triangulated categories such as derived categories and stable module categories of repetitive algebras. We defines a Lie bracket by Euler characteristics of constructible subsets and thus realizes infinite dimensional Lie algebras of various types with non-degenerated bilinear form.
本文的主要结果是在导出范畴和重复代数的稳定模范畴等三角范畴水平上建立相应的几何-拓扑模型,并利用相应可构集的欧拉示性数定义了一个Hall代数的交换子乘法,从而在三角范畴水平上实现了一大类无限维李代数的整体构造,并且这类李代数本质上都具有非退化的不变双线性型。
-
Then we study that quadratic Lie colour algebra also can be decomposed to direct sum of ideas who contains no nontrivial non-degenerate idea of L . And the decomposition is unique except the order of the ideas .
然后给出了二次李color代数也可以分解为不包含非平凡的非退化的color理想的直和,而且分解除理想次序外是唯一的。
-
Also in the 3-D space, we assign the 20 amino acids to 20 vertices of the dodecahedron. By the symmetry of the dodecahedron we obtain 3-D representation of 20 amino acids, and 3-D graphical representation and the corresponding numerical sequence of protein sequences. And similarity and dissimilarity analysis based on the invariants of graphs and characteristics of numerical sequences are given for nine RNA secondary structures of RNA-3 of virus. We construct sequence phylogenetic tree of a group of cytochromes C protein.
在DNA三联体密码子表示的基础上,在半复平面上给出了蛋白质序列的非退化的2-D图形表示,同时利用复向量的主要特征—模和相位,给出了蛋白质序列的一种数值刻划,进一步在3-D空间里,把20种氨基酸分别分配给正12面体的20个顶点,根据正12面体的对称性得到了20种氨基酸的3-D表示,进而得到了蛋白质序列的3-D图形表示和对应的数字序列,并利用图的不变量和数字序列的特征比较了9种动物的神经元
-
This article proposed a new 3D graphic representation with non-degeneration on the basis of studying gene sequences representation model.
在基因序列图形表达模型研究的基础上,提出了一种新的非退化的基因图形三维表示方法。
-
The relation between the nondegeneracy of their primal-dual optimal solutions and their strictly complementary optimal solutions is characterized, and then the conditions in which the solutions of a pair of primal and dual conic programmings are unique respectively are obtained.
从几何的观点描述一对原始-对偶锥规划可行域的极点,给出原始-对偶非退化的最优解与严格互补的最优解之间的关系,从而得到锥规划最优解唯一的条件。
-
The new algorithm only needs to solve four systems of linear equations having the same nonsingular coefficient matrix.
本文提出的算法只需求解四个具有相同的非退化的系统矩阵的线性方程组以得到搜索方向。
-
It is proved by using the function approximation theory and martrix theory that for a degenerate elliptic equation of the first class, if the third boundary value condition is satisfied at its nondegenerate boundary and the given derivative values are satisfied at its degenerate boundary, then its solution is existent and unique.
摘 要 运用逼近理论及矩阵理论证明:如果一类退化椭圆型方程在非退化边界上满足第三边界条件,在退化边界上满足给定微商值,那么它的解是存在且唯一的。
-
The discussions declare that the least condition can be represented by three items, that is, the total number, divistion ratio and spatial distribution of character points. There are also three possible cases involved in least conditions. They are, undegenerate, degenerate and seriously degenerate ones.
对于特征点总数、特征点的分配、特征点的分布等三项内容;非退化、退化、严重退化的三种情形;最小的必要条件、充分条件等,进行了广泛深入的讨论,并给出了四个判别准则及单谷性的有关结论,从而深化了对于评定理论的认识。
- 更多网络解释与非退化的相关的网络解释 [注:此内容来源于网络,仅供参考]
-
column rank:列秩
行列式(determinant)与线性方程组的解(solution)的一些关系(理解)如果n*n矩阵A的行列式|A|不等于0,则称A为非退化的(non-degenerative).否则是退化的(generative)线性表示,线性等价,极大线性无关组;(行空间,列空间),行秩(row rank),列秩(column rank),秩,满秩矩阵,行满秩矩阵,
-
degenerate:退化的
线性函数(linear function);(零映射),(负映射),(矩阵的和),(负矩阵),(线性映射的标量乘积),(矩阵的标量乘积),(矩阵的乘积),(零因子),(标量矩阵(scalar matrix)),(矩阵的多项式);(退化的(degenerate)方阵),(非退化的(non-degenerate)方阵),
-
inverse matrix:逆矩阵
(矩阵的标量乘积),(矩阵的乘积),(零因子),(标量矩阵(scalar matrix)),(矩阵的多项式);(退化的(degenerate)方阵),(非退化的(non-degenerate)方阵),(退化的线性变换),(非退化的线性变换),(逆矩阵(inverse matrix)),(可逆的(invertible),
-
nonsignificant:不重要的
nonsexual 无性别的 | nonsignificant 不重要的 | nonsingular 非退化的
-
nonsingular:非退化的
nonsignificant 不重要的 | nonsingular 非退化的 | nonsked 不定期的
-
nonspecial group:非特殊群
nonsingular matrix 非退化阵 | nonspecial group 非特殊群 | nonstable 不稳定的
-
row rank:行秩
矩阵的秩(rank),行列式(determinant)与线性方程组的解(solution)的一些关系(理解)如果n*n矩阵A的行列式|A|不等于0,则称A为非退化的(non-degenerative).否则是退化的(generative)线性表示,线性等价,极大线性无关组;(行空间,列空间),行秩(row rank),列秩(column rank),
-
dysgenic:种族退化的
dysgenic 非优生的 | dysgenic 种族退化的 | dysgenics 劣生学
-
dysgenic:非优生的
dysgenesis 发育不全 | dysgenic 非优生的 | dysgenic 种族退化的
-
non-degenerated linear substitution:非退化的线性变换
non-degenerated square formation 非退化的方阵 | non-degenerated linear substitution 非退化的线性变换 | nonlinear 非线性