- 更多网络例句与非平凡解相关的网络例句 [注:此内容来源于网络,仅供参考]
-
First, we introduce the concept of polarizable Carnot group and give some new properties of its homogeneous norm. Then we construct a class of non-divergence equations as well as their nontrivial solutions. The failure of corresponding A-B-P type estimate and uniqueness to the Dirichlet problems in space~ follow.
首先引入可极化Carnot群的概念,给出了可极化Carnot群上齐次模的若干性质,然后构造了一类非散度型次椭圆方程及其非平凡解,由此证明此类方程Dirichlet问题的解在函数空间L~中不唯一,进而证明相应的Alexandrov-Bakelman-Pucci型估计不成立。
-
The contents are the following:In chapter two, the existence and multiplicity results for the following equation of p-Laplacian type are obtained.For the elliptic quasilinear hemivariational inequality involving the p-Laplacian operator,in order to use the mountain pass theorem proving the existence result, the authors usually need to use the uniform convexity of the Sobolev space to prove the energy function satisfies the PS condition. But for the p-Laplacian type equation mentioned above, this method is no use. To overcome this difficulty, the potential function is assumed to be convex, then I prove the existence result and by using the extension of the Ricceri theorem, the multiplicity result for the problem is obtained.
在第二章我们首先考虑关于以下p-Laplacian型(p-Laplacian type)方程非平凡解及多解的存在性对于带有p-Laplacian算子的椭圆拟线性半边分不等式问题,为应用非光滑的山路引理证明解的存在性,在证明方程所对应的能量泛函满足非光滑的PS条件时,需利用Sobolev空间的一致凸性,但是对于具有更一般形式的算子的p-Laplacian型方程,不具备上述性质,在文中为克服这一困难,本人对位势泛函做了一致凸的假设,从而证明了解的存在性,并应用推广的Ricceri定理,证明了方程三个解的存在性。
-
By discussing the trivial and nontrivial solutions,and then we discuss the solvability for nonhomogeneous equation.
在第三章中,我们通过对齐次p-Laplacian 方程的平凡解与非平凡解的讨论,建立指标分类理论。
-
In this paper,the existence of the nontrivial solution to a class of quasi-linear elliptic problem is investigated based on the Hardy inequality and the Mountain Pass Geometry.
使用Hardy不等式和山路几何研究了一类拟线性椭圆问题非平凡解的存在性。由于难以得到所讨论的问题的基本解,因此研究中对基本解进行了估计,并证明了c条件
-
Later, we estimate our variational functional to get a nontrivial solution of the new equation and so the second solution for is obtained.
然后我们利用函数平移将原来的非齐次边界问题转化为奇次边界问题,验证了其对应的变分泛函满足不带条件的山路引理的两个条件,并给出了泛函临界点存在的一个充分条件,最后对具体的变分泛函进行估计,得到了新方程非平凡解的存在性结果,从而得到了原方程第二个正解的存在性结果。
-
The paper deals with the existence of nontrivial solution s to a class of nonlinear Hammerstein eigenvalue problems using the cone theory and the topological approach.
运用锥理论和拓扑方法研究一类非线性Hammerstein本征值问题的非平凡解。最后,把抽象结果应用于研究Lidstone本征值问题的非平凡的存在性
-
The main results and novelties of the paper are as follows:Firstly, we study the existence of nontrivial solution for the following nonlinear equations with singular pontential By using variational methods and critical point theory, we construct linking type critical value of this kind of singular elliptic equations, with the properties of the eigenvalue, we estimate the critical value and prove the local condition holds to show the existence of the nontrivial solution.
论文的创新点及主要结果如下:首先研究有界区域上具有奇异位势的非线性方程的非平凡解的存在性,运用变分方法与临界点理论,构造这一类奇异椭圆方程的环绕型临界值,并由特征值的性质给出临界值的估计,同时证明局部条件成立,最终证明方程非平凡解的存在性。
-
Since the solutions of this problem are the critical points of the associated energy function. One generally needs some compactness such as PScondition or C-condition to prove the existence of critical points of the energy func-tion, but when we study the elliptic equation in R~N, the compactness condition does not always hold since the imbedding of the Sobolev space H_0~(1,2)into L~(2*) is not compact. In this chapter, based on the nonsmooth critical point theory, and by using the approximation technique with periodic function, the existence of nontrivial solution is obtained.
由于该方程的解就是其所对应的能量泛函的临界点,通常都要在一些紧型条件的基础上来证明其所对应的能量泛函临界点的存在性,但当我们在无界域上考虑该椭圆方程解的存在性时,Sobolev空间H_0~(1,2)到L~(2*)的嵌入非紧,从而导致所对应的能量泛函失去紧性,本章在非光滑临界点理论的基础上,应用周期逼近的方法证明该问题非平凡解的存在性。
-
Firstly, the eigenvalue problem of a class of second order elliptic equation with critical potential and indefinite weights is considered. Then, using critical point theory, Trudinger-Moser inequality and the properties of the first eigenvalue, we prove the existence of a nontrivial solution for a class of nonlinear elliptic with critical potentialand indefinite weights in R~2. Secondly, we prove the existence of nontrivial solutions for a class of subcritical and critical elliptic systems with indefinite part in R~2 byusing a generalized linking theorem, Trudinger-Moser inequality and concentration-compactness principle.5. The existence of at least three weak solutions for discrete boundary value problem is established by using a three critical point theorem introduced by Ricceri.
首先,讨论了R~2中一类带不定权且含临界位势的二阶椭圆型方程的特征值问题,并借此特征值问题的第一特征值性质,利用山路引理及Trudinger-Moser不等式,证明了R~2中一类带不定权且含临界位势的非线性椭圆型方程非平凡解的存在性;其次,利用广义环绕定理,Trudinger-Moser不等式及集中列紧原理,得到了R~2上一类具有强不定部分的半线性椭圆型方程组在非线性项分别为次临界增长和临界增长情形下非平凡解的存在性。
-
Elaborates two methods for computing the trivial solution to the congruence in determinate polynomial time, argues non-trivial solutions to the congruence can not be obtained cyclically from the trivial solution, infers and demonstrates the two new methods for seeking the trivial solution.
描述了在确定多项式时间内计算平凡解的两个方法,论述了非平凡解不能从平凡解循环得到,推导和证明了两个新的寻找平凡解的方法。
- 更多网络解释与非平凡解相关的网络解释 [注:此内容来源于网络,仅供参考]
-
nontrivial element:非平凡元素
nontangential 不相切的 | nontrivial element 非平凡元素 | nontrivial solution 非平凡解
-
nontrivial solution:非平凡解
nonsigular matrix 非奇异矩阵 | nontrivial solution 非平凡解 | norm of vector V 向量V的范数
-
nontrivial solution:非无效解(有效解)
nontrivial a 非平凡的 | nontrivial solution 非无效解(有效解) | normal n [数]法线
-
nontrivial solution:非平凡解,非无效解
nontrivial partition 非普通划分 | nontrivial solution 非平凡解,非无效解 | nonumeric application 非数据应用
-
nonuniform convergence:非一致收敛
nontrivial solution 非平凡解 | nonuniform convergence 非一致收敛 | nonvoid proper subset 非空真子集
-
norm of vector:向量的范数
nontrivial solution 非平凡解 | norm of vector 向量的范数 | normalizing vector 规范化向量