- 更多网络例句与非代数的相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Assume a Lie algebra g has a form B which has all the useful properties of Killingform:bilinearity nondegeneracy,symmetry and invariance.Note that for such a Liealgebra the adjoint representation is equivalent to the coadjoint representation.We callit a symmetric self-dual Lie algebra and the form B an invariant scalar product.
在第一部分的最后一节,我们引进了拟Heisenberg代数的概念,证明了这些李代数均为具有非极大秩的CN李代数,进一步我们还证明了这些CN李代数构成的集合与极大秩幂零李代数构成的集合之间存在着1-1对应关系。
-
Libermann.The early researcheson this kind of manifolds were closely related to Physics and Mechanics.But since1991,S.Kaneyuki published his result on the algebraic condition for the existence ofinvariant〓structures on a coset space,Lie theory has played the most impor-tant role in the study of this kind of manifolds.In particular,dipolarizations in a Liealgebra are closely related to the homogeneous〓manifolds.Dipolarizationsin semisimple Lie algebras and the homogeneous〓manifolds associated withthese dipolarizations have been studied by S.Kaneyuki,Z.X.Hou and S.Q.Deng.Inthe partⅡ of this thesis we study the dipolarizations in some quadratic Lie algebrasand the homogeneous parakahler manifolds associated with these dipolarizations.
Libermann给出的,早期的有关类流形的研究与物理和力学密切相关,自从1991年金行壮二发表了陪集空间上存在不变仿凯勒结构的代数化结果后,李群及李代数理论在这类流形的研究中起着主要作用,特别地,李代数的双极化与这类流形密切相关,半单李代数的双极化的相关几何,金行壮二,候自新和邓少强等人已作了研究,二次李代数是比半单李代数更广且带有非退化不变双线性型的李代数,本文主要研究了二次代数的双极化及相关几何。
-
It is a natural generalization of the notion of implicative ideals in BCK algebras.
证明了BCI代数的一个非空子集是BCI关联理想当且仅当它既是BCI交换理想又是BCI正定关联理想,从而揭示了这三类理想之间的内在联系,并将BCK代数中知名论断:BCK代数的一个非空子集是关联理想当且仅当它既是交换理想又是正定关联理想,推广到BCI代数上去。
-
In this paper, we continue thestudy of Jordan multiplicative maps, Jordan triple multiplicative maps, elementarymaps, Jordan-triple elementary maps, Lie-skew multiplicative maps, Lie and Jordanderivation, 2-local isomorphism, local derivation and 2-local derivation on some operatoralgebrac.
这些算子代数包括一类非常重要的非自伴非半单非素的算子代数,即套代数。
-
Although the quantum double of a finite Clifford monoid is indeed a generalization of the quantum double of a finite group, the quantum doubles in [L2] can not usually be regarded as
作为特殊情况,非交换的半格分次弱Hopf代数的量子偶同样可以构造出来。作为群和非交换非余交换Hopf代数的量子偶的构
-
Some properties, such as primeness, semiprimeness and nondegeneracy are introduced. The primeness and semiprimeness are lifted from a Lie color algebra to its algebras of quotients.
在此基础上,本文提出了Lie color代数的商代数和弱商代数的概念,定义了Lie color代数的一些性质如素性、半素性和非退化性等,并将素性和半素性推广到Lie color代数的商代数中。
-
Besides having a some insight into theinternal structure of operator algebras,it gives a greatimpetus to the development of modern mathematics towords thenon-commutative direction,especially to the developement ofnon-commutative geometry,non-commutative algebraical topologyas well as non-commutative algebraical geometry.
除了反映算子代数自身的内在性质之外,它还对于现代数学朝着非交换的方向发展起着积极的推动作用,特别对于&非交换微分几何&,&非交换的代数拓朴&,甚至&非交换的代数几何&等非交换的数学学科的发展具有重要的影响。
-
U(4) algebra is very suitable to describe triatomic molecules, for their Fermi interaction can be described by using nondiagonal matrix elements of Majorana operator.
在研究多原子分子的李代数方法中,尤以U(4)代数适合描述三原子分子,这不仅仅是因为U(4)代数完全描述的是三维情形,物理图象更加清晰直观,而且,U(4)代数的Fermi相互作用可以由Majorana算子的非对角元素给出,不需要再引进另外一个代数。
-
The concept of semialgebra is given,then the realitionship between the additive can-cellation semialgebras with triviality congruence and algebras over semiring.
给出半环上半代数的概念,证明了半环上加法可消半代数,且只有非平凡同余,那么该半代数是半环上的代数。
-
In the fifth chapter,we study dipolarizations in some quadratic Lie algebras.Inthe first section,we obtain some results on the classification of dipolarizations in gen-eral quadratic Lie algebras,and prove that there exist dipolarizations in the solvablequadratic Lie algebras whose Cartan subalgebras consist of semisimple elements.
第五章讨论了某些二次李代数的双极化,在第一节中,我们给出了二次李代数的双极化的一些分类结果;特别证明Cartan子代数是由半单元组成的二次李代数上存在双极化,第二节确定了四维扩张Heisenberg代数的所有双极化,在第三节中,我们构造了2n+2维扩张Heisenberg代数的六类双极化,我们发现两个不同于半单李代数情形的有趣事实:(1)在扩张Heisenberg代数上同时存在对称和非对称双极化;(2)对应于扩张Heisenberg代数的双极化的特征元有的是半单的有的是幂零的。
- 更多网络解释与非代数的相关的网络解释 [注:此内容来源于网络,仅供参考]
-
foliation:叶状结构
in---叶状结构(foliation)的$C^*$代数.这是一个基本的例子,在过去的二十多年里面一直这里的对象是由V上一个叶状结构$F$的叶(leaf)的空间构成的"非交换流形".如果我们以黎曼流形上的符号差算子(signature operator)或者Dirac算子作为模型,
-
representation of Lorentz group:洛伦兹群(的)表示
nonzero algebra 非零代数 | representation of Lorentz group 洛伦兹群(的)表示 | sleeper handling crane 轨枕起重机
-
nonzero algebra:非零代数
electric multiple unit railcarset 电力多组动车组 | nonzero algebra 非零代数 | representation of Lorentz group 洛伦兹群(的)表示
-
number system:数系
代数方面强调数系(number system)概念,用较严密的逻辑方法以证明数学上的定理. 前人依赖欧几里德几何来训练逻辑思维,在新数学课程里,主要是削减欧氏几何的非基本命题或非基本而繁复的命题而致力于更有趣的项目. 课程中加入集合论的概念逻辑,
-
rank:秩
在数论领域,他给出了整数型亏格的第一个普遍定义,给出"秩"(rank)的概念,这个概念的许多问题仍未得到解答,更深入地钻研他的论文也许会导致新的结果. 关于代数学,他研究了次数≥3的算术理论、非交换代数、包络代数,