- 更多网络例句与非一致收敛相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Second, we prove that consensus value of continuous time-invariant systems converges globally asymptotically to the convex combination of initial states, thus, determining the consensus value of the non-balanced topology.
对于多智能体网络连续系统,该系统的一致平衡点最终收敛于初始状态的凸组合,本文最终确定了非平衡拓扑结构的一致平衡点。
-
Tan and Xu [1] had proved the theorem on convergence of Ishikawa iteration processes of asymptotically nonexpansive mapping on a compact convex subset of a uniform convex Banach space , Then Liu Qihou [3] presents the necessary and sufficient conditions for the Ishikawa iteration of asymptotically quasi-nonexpansive mapping with an error member on a Banach space convergent to a fixed point . Xu and Noor [5] had proved the theorem on convergence of three-step iterations of asymptotically nonexpansive mapping on nonempty closed, bounded and convex subset of uniformly convex Banach space.
Tan和Xu已经证明了建立在一致凸Banach空间紧凸子集上的渐进非扩张映射的Ishikawa迭代序列的收敛原理,随之,刘齐侯又阐述了Banach空间上渐进准非扩张映射T的具误差的Ishikawa迭代序列收敛于T的不动点的充分必要条件;之后,Xu和Noor也证明了定义在一致凸Banach空间某非空有界闭凸子集上的渐进非扩张映射的三步迭代序列的收敛原理。
-
Chapter 2 deals with some refinements of the central limit theorem for a class of non-uniformly hyperbolic dynamical systems called Youngs system, such as local central limit theorem and so-called Berry-Esseen theorem giving the rate of convergence in the central limit theorem.
在第二、三章中,我们考虑一类重要的非一致双曲动力系统的统计性质-中心极限定理,及其进一步的精细结果如局部中心极限定理,带有收敛速度的中心极限定理。
-
Chapter 2 deals with some refinements of the central limit theorem for a class of non-uniformly hyperbolic dynamical systems called Young\'s system, such as local central limit theorem and so-called Berry-Esseen theorem giving the rate of convergence in the central limit theorem.
在第二、三章中,我们考虑一类重要的非一致双曲动力系统的统计性质-中心极限定理,及其进一步的精细结果如局部中心极限定理,带有收敛速度的中心极限定理。
-
The nonparametric estimation of conditional functional and its derivatives are studied.
证明了条件泛函及其导数的非参数估计达到最优一致收敛速度。
-
The design of finite impulse reponse filters which is based on the window function may produce oscillation for the non-uniform convergence of the filter, which affects the precision of the filter,but improvement on the precision need increase the calculation amount,which is unfavorable to the real-time system.
用窗函数法设计FIR滤波器,由于非一致收敛而产生振荡,从而影响了滤波器的精度,而提高精度是以增加计算量为代价的,对于实时系统是很不利的。
-
This paper discusses convergence of Ishikawa iteration sequence and existence of fixed points for set-valued nonexpansive mapping in uniformly covex Banach space, and the conditions are shown which guarantee the convergence of the iteration sequence to a fixed point.
讨论了δ集值非扩张映象在一致凸Banach空间中不动点非空的充分必要条件与Ishikawa迭代序列的收敛性及确保迭代程序收敛到不动点的条件,所得结果是单值非扩张映象的推广和发展。
-
Furthermore, he proved that the iterative sequence he introduced converged strongly to fixed point of asymptotically nonexpansive nonself-mappings.
Chidume首次提出渐近非扩张非自映象、一致L-Lipschitz非自映象的定义,并证明了所引入的迭代序列强收敛于渐近非扩张非自映象的不动点。
-
Based on some results given by K Tan and H K Xu[1] proved, the convergence of three-step iterations of uniformly Lipschitz asymptotically nonexpansive mapping on a compact subset of a uniform convex Banach space had proved.
引入一致李普希兹的概念,然后在一些已有结果的基础上,证明一致凸Banach空间的紧子集上的一致李普希兹渐进非扩张映射的三步迭代序列的收敛问题。
-
Inspired by these results, in this paper, we first give the definition of a new mapping ? uniformly Lipschitz asymptotically nonexpansive mapping on a compact subset of a uniform convex Banach space, then construct three-step iterative sequences of uniformly Lipschitz asymptotically nonexpansive mapping in this subset . We proved the convergence of this three-step iterative sequences for uniformly Lipschitz asymptoticallynonexpansive mapping, Further more, we proved this three-step iterative sequences with an error member converge to fixed points.
从中得到启发,在本文我们首先定义了一致凸Banach空间某非空紧子集上的一种新的映射——一致李普希兹渐进非扩张映射,在该紧子集上构造关于一致李普希兹渐进非扩张映射的三步迭代序列以及具误差的三步迭代序列,先来讨论三步迭代序列的收敛性,进而讨论具误差的三步迭代序列的收敛性。
- 更多网络解释与非一致收敛相关的网络解释 [注:此内容来源于网络,仅供参考]
-
nonuniform convergence:非一致收敛
nontrivial solution 非平凡解 | nonuniform convergence 非一致收敛 | nonvoid proper subset 非空真子集
-
nonvoid proper subset:非空真子集
nonuniform convergence 非一致收敛 | nonvoid proper subset 非空真子集 | nonvoid set 非空集