- 更多网络例句与零半群相关的网络例句 [注:此内容来源于网络,仅供参考]
-
This paper researches linear maps preserving orthogonality,obtains the linear maps preserving othrogonality,it is either a rank -declining or rank -keeping map or a map with nilpotent element in its codomain.
利用分块成向量的方法证明了MnMn(F为域F上所有n×n矩阵构成的乘法半群上的n×n拟正交矩阵组至多含有n个矩阵,利用方程组的解的理论证明了Mn中与给定矩阵A构成两两拟正交矩阵组的矩阵个数不超过n-Rank+1,从而得到Mn上保持拟正交性的线性映射φ要么是降秩的或者保秩的映射,要么φ的值域中含有幂零元。
-
Many sufficient and necessary conditions for a finite group to be solvable are given, which generalize some known results.
另一方面,我们研究了Sylow-子群的某些特殊子群的半覆盖远离性对有限群结构的影响,给出了一些有限群为p-幂零和超可解的充分条件。
-
After descibing the concepts, definitionsand operation approaches of quantum group and SLq(2) Lie algebra, the physicalmeaning of quantum group particles is explained in the present thesis. The gaugeinvariance in SLq(2) gauge field and its thermodynamics model is considered basedon the idea of q-deformation. The zero energy gap equation and q-deformed energygap equation are derived under the assumption of q-quantization and semi-classical q-quantization, then the zero-temperature energy gap A(0,q) and crititical temperature〓 can be calculated from the q-energy gap equation.
在介绍了量子群和SLq(2)李代数的基本概念,定义和运算方法后,文中进一步阐述了量子群粒子的物理意义;在q变形思想基础上,本文研究了SLq(2)规范场及其热力学模型中的规范不变性质,并在q量子化和半经典q量子化的假设下导出了零能隙方程和q变形能隙方程;然后从q能隙方程计算了与零温度能隙△(0,q)和临界温度〓。
-
By the definition of Green-relation and the analogue of generalized Greens lemma, this paper first studied some properties of H-class、 D--class of rpp semigroups, then by left S-system 、-bisystem and tensor product, we described a blocked Rees matrix semigroup. Especially, the paper studied primitive rpp semigroups .
本文利用在rpp半群上定义的广义Green~(l-关系及相应的广义Green定理,首先研究了rpp半群H~(l-类、D~(l-类的若干基本性质,然后以左S-系、-双系和张量积作为工具,刻画了块Rees矩阵半群结构,最后从带零的本原rpp半群出发,构造出A型块Rees矩阵半群,并证明了一个半群S为本原rpp半群,当且仅当S同构于一个A型块Rees矩阵半群。
-
For any semigroup-graded ring R= R_ x, the constructions of graded strongly prime radical and graded generalized nil radical of R are given.
对于半群分次环的分次强素根和分次广义诣零根,分别给出它们的构造。
-
The nilpotency of finite groups was studied by the properties of semidirect product,and some good results were got.
通过半直积的性质来研究有限群的幂零性,并得到一些好的结果。
-
In this paper, we give explicit constructions and formulations for harmonic maps from R1,1 into classical real semisimple Lie groups by using Darboux transformation. We also discuss pluriharmonic maps from complex manifoldsinto symmetric spaces and Willmore surfaces in Sn. By converting geometric conditions satisfied by these maps into integrable systems, and using the the-ory of integrable systems, we give explicit constructions for pluriharmonic maps from complex manifolds into symmetric spaces and the Willmore surfaces in Sn respectively. Finally, we classify hypersurfaces in Sn+1 with three distinct prin-ciple curvatures and zero Mobius form using the theory of Mobius geometry. The paper consists of four chapters.
本文首先利用Darboux变换的方法给出了从Lorentz平面R~(1,1)到经典实半单Lie群的调和映照的具体构造,并给出其显式表示;其次研究了复流形到对称空间的多重调和映照及球空间S~n中Willmore曲面,将这些映照所满足的几何条件转化为可积系统,然后利用可积系统理论分别给出复流形到对称空间的多重调和映照与S~n中Willmore曲面的构造;最后利用Mōbius几何的理论给出S~(n+1)中具有三个不同主曲率且Mōbius形式为零的超曲面的分类。
-
On the basis, three equivalent statements are obtained. Let S be a semigroup with left central idempotents, then (1) S is a quasi-right semigroup;(2) S is a quasi-completely regular, and RegS is an ideal;(3) S is a nil-extension of strong semilattice of right semigroup.
在此基础上得到了3个等价命题:若S为具有左中心幂等元半群,则(1) S为拟右半群;(2) S为拟完全正则的,RegS为S的理想;(3) S为右群强半格的诣零理想扩张。
-
Firstly we introduce the concept of Rees matrix semigroups without zero i.e.
矩形群、左群都是极其重要的半群,在Mario[2]中这两种半群都已有了很好的刻画,本文后两章将给出推广了的矩形群和左群的详细刻画,全文共分三章,具体内容如下:第一章主要对推广之后Rees矩阵半群的刻画进行了描述,在这一章里先介绍了无零Rees矩阵半群的概念,它是一类矩阵半群M=MT;I,?
-
By using properties of quasi-regular semigroups and left central idempotents, some statements are proved. Let S be a quasi-right semigroup, then (1) S is a quasi-completely regular semigroup;(2) RegS is a completely regular semigroup;(3) R(superscript *) is the smallest semilattice congruence on S;(4) Each R-class T(subscript α) on RegS is a right group;(5) T(subscript α)G(subscript α)×E(subscript α), where G(subscript α) is a group, E(subscript α) is a right zero semigroup.
利用拟正则半群和左中心幂等元的性质,证明了S为拟右半群时,(1) S为拟完全正则半群;(2) RegS为完全正则半群;(3) R为S上的最小半格同余;(4) RegS上的每个R-类T为右群;(5) TG×E,其中G为群,E为右零半群。
- 更多网络解释与零半群相关的网络解释 [注:此内容来源于网络,仅供参考]
-
left noetherian semigroup:左诺特半群
left multiplication ring 左乘环 | left noetherian semigroup 左诺特半群 | left non zerodivisor 左非零因子
-
left non zerodivisor:左非零因子
left noetherian semigroup 左诺特半群 | left non zerodivisor 左非零因子 | left operator 左算子
-
zero semigroup:零半群
zero section 零截面 | zero semigroup 零半群 | zero set 零集
-
zero section:零截面
zero ring 零环 | zero section 零截面 | zero semigroup 零半群
-
zero set:零集
zero semigroup 零半群 | zero set 零集 | zero sum game 零和对策