- 更多网络例句与雅可比法相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this paper, firstly the elimination tree theory is introduced in brief, and the structure of Jacobian matrix is determined by use of symbolic factorization; then by use of sparse vector method each column of lower triangular matrix L and each row of upper triangular matrix U are solved.
介绍了消去树理论,并采用符号因子分解技术确定雅可比矩阵的结构,然后采用稀疏向量法求取L阵的每行和U阵的每列。
-
Starting with properties of cubic parabola, it is demonstrated elementarily that solving elliptic equations using Jacobian elliptic functions, analytic solutions for a class of nonlinear wave equations and properties of nonlinear waves can be obtained, especially for solitary waves.
从立方抛物线的特性谈起,用较初浅的方法,借助于雅可比椭圆函数求椭圆方程的解,说明一类非线性波方程可用行波法求解析解。
-
As to the problem of divergency of conventional power flow method,By using an augment eqution this method can get the exact limit of voltage stability and the whole PV curve without encountering the numerical difficulty of ill-conditioning.
针对常规潮流法在鞍结分岔点附近不收敛,该方法通过增加一维潮流方程,消除了功率极限点附近的雅可比矩阵奇异的现象,获取精确的电压稳定极限和整支PV 曲线。
-
Direct method of Gaussian elimination, Gaussian main-element elimination, and the iterative method of Jacobi iteration, Gauss - Seidel (Gauss - Seidel) iterative method is linear equations numerical solution of important ways.
直接法中的高斯消去法、高斯列主元消去法,以及迭代法中的雅可比迭代法、高斯-赛德尔(Gauss-Seidel)迭代法又是线性方程组数值求解的重要方法。
-
In the two-dimensional simulation, the fully implicit difference scheme is used for the continuity equations to ensure numerical stability; Jacobian iteration is used to solve the difference equations, and only nonzero elements in the coefficient matrixes of these equations are dealt with, which reduce the requirement for memory and shorten the calculation time.
在两维模拟计算中,对连续性方程采用全隐式差分方案以保证数值稳定性;运用雅可比迭代法求解差分方程组,并且在求解过程中,只对差分方程组系数矩阵中的非零元素进行处理,因此减少了对内存的需求量,而且缩短了计算时间。
-
To study numerical solution of the linear equations,the article presents direct method ,Jacobi iterate method and Gauss-seidel iterate method to approximately calculate,and has given its process in MATLAB.
为研究线性方程组的数值解,文章用直接解法、雅可比迭代法、高斯-赛德尔迭代法进行了近似计算,并给出在MATLAB中计算的程序。
-
Elaborate a basic theory of calculating group of linear equation by iteration method, reforming Jacobi iteration method, raising constringency rate.
阐述用迭代法解线方程组的基本理论,对雅可比迭代法作了一些改进,提高了其收敛速度。
-
Firstly, several kinds of schemes were proposed according to the design demand. The best scheme was chosen after analyzing and comparing the schemes. The robot's structure was designed with Pro/Engineer and AutoCAD software. Secondly, the kinematics analysis conducted, coordinate transformation matrix using D-H method was set up, and the kinematics equation direct solution and inverse solution was deduced. The manipulative interface about the kinematics equation direct solution and inverse solution was completed with VC++ and the velocity Jacobian of displacement matrix was constructed using differential transform method. In the process of the trajectory planning based on robot's kinematics analysis, I propone a method by which we can get middle nodal point with normalizing factor in order to simplify our searching for these middle nodal points. In addition, I give these middle nodal points with actual physics signification. For eliminating contradiction between real-time and accuracy, I bring forward separately limit of error and reversal interpolation method. For decreasing calculation quantity, we resort to tri-spline interpolation in the articulation space.We analyse the work range of the robot by resorting to graphic means.
首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较后,选择其中最优的方案后用Pro/Engineer和AutoCAD软件进行了机器人模型结构设计;其次,进行了运动学分析,用D-H方法建立了坐标变换矩阵,推算了运动方程的正、逆解,运用VC++制作了正、逆运动学求解的求解界面;并且用微分变换法推导了速度雅可比矩阵;在基于机器人的运动学的轨迹规划中,通过在操作空间的规划,提出了归一化因子来求解中间结点,通过它可以使求解中间结点变得更简单,并且赋予这些中间结点实际的物理含义,对于规划中精确性和实时性的矛盾,提出了以误差极限法和反向插值法来解决的方法;为了减少规划过程中计算量,在关节空间进行三次样条插值;然后借助图解法进行工作空间分析,作出了实际工作空间的轴剖图。
-
The astringency, error and stability of the numerical method are researched. Zero matrix method, constant matrix method, and Jacobian matrix method are constructed in order to improve numerical precision and efficiency.
研究了所提数值计算方法的误差、稳定性、收敛性等数学性质,在计算精度和计算效率两方面提出了一些改进措施,构造了零矩阵法、常数矩阵法、雅可比矩阵法等计算格式。
-
To improve com putation efficiency, we replace the traditional Jacob method by this Power Algor ithm, which reduces largely calculating time without losing accuracy.
为了提高计算效率,应用乘幂法代替传统使用的雅可比法等方法,大大缩短了计算时间,而且不影响计算结果的精确性。
- 更多网络解释与雅可比法相关的网络解释 [注:此内容来源于网络,仅供参考]
-
cyclic jacobi method:循环雅可比法
cyclic group 循环群 | cyclic jacobi method 循环雅可比法 | cyclic method 循环法
-
Jacobi''s bracket:雅可比括号
Jacobi method 雅可比法,雅克比法 | Jacobi's bracket 雅可比括号 | Jacobi's formula 雅可比公式
-
jacobi identity:雅可比恒等式
jacobi criterion 雅可比准则 | jacobi identity 雅可比恒等式 | jacobi method 雅可比法
-
jacobi method:雅可比法
jacobi identity 雅可比恒等式 | jacobi method 雅可比法 | jacobi polynomial 雅可比多项式
-
jacobi method:雅可比法,雅克比法
Jacobi matrix method 雅可比矩阵法 | Jacobi method 雅可比法,雅克比法 | Jacobi's bracket 雅可比括号
-
block jacobi method:分块雅可比法
block iterative method 成组叠代法,块迭代法 | block jacobi method 分块雅可比法 | block journal 止推轴颈
-
Jacobi matrix method:雅可比矩阵法
Jacobi matrix 雅可比矩阵 | Jacobi matrix method 雅可比矩阵法 | Jacobi method 雅可比法,雅克比法
-
jacobi polynomial:雅可比多项式
jacobi method 雅可比法 | jacobi polynomial 雅可比多项式 | jacobian 函数行列式
-
jacobian method of eigenvalue problem:特盏问题的雅可比法
jacobian matrix 函数矩阵 | jacobian method of eigenvalue problem 特盏问题的雅可比法 | jacobian variety 雅可比簇
-
jacobi method:雅可比法,雅克比法
Jacobi matrix method 雅可比矩阵法 | Jacobi method 雅可比法,雅克比法 | Jacobi's bracket 雅可比括号