- 更多网络例句与遍历性定理相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Chapter 1 gives the background,current research process of relatedproblems and summarizes this thesis\'s work.In chapter 2,we study the Brownian motion with holding and jumping on the boundary.We use the resolvent method to obtain the infinitesimal generator because the domain of the infinitesimal generator is essentially the same as the range of the resolvent.Knowledge of this range and of the differential operator determines uniquely the infinitesimal generator.Since the semigroup generated by the DHJ is not strongly continuous,to use the nice property of strongly continuous semigroup in analytic theory,in chapter 3 we show that the dual is strongly continuous and derive ergodicity through spectral radius formulas and finally obtain the ergodic theorem by duality. In chapter 4,we discuss a class of a more general process---one dimensional Feller diffusion proposed by W.Feller in 1954.The Feller diffusion allows the possibility of jumps from boundary to boundary,not only from boundary to the interior.We give the stationary distribution of this process.
具体地,本文的结构如下:第一章给出了问题产生的背景,研究现状及本文的主要工作;第二章研究了在边界上逗留后随机跳的布朗运动,我(来源:3dABC论文网www.abclunwen.com)们用预解算子的方法得到其无穷小生成元,因为无穷小生成元的定义域本质上就是预解算子的值域,知道这个值域和微分算子形式就能唯一地决定无穷小生成元;由于DHJ过程产生的半群不是强连续的,为利用强连续半群的一些漂亮性质,在第三章中我们证明其对偶半群是强连续的,然后由谱半径公式得到遍历性并且最后由对偶得到遍历定理;第四章讨论了Feller在1954年引入的更广的一类过程----一维Feller扩散过程,Feller扩散过程允许有从边界到边界的跳发生,即不仅仅局限于从边界到内部的跳,在这一章中,我们给出了一维Feller扩散过程的平稳分布;在第五章,我们讨论了一些相关的问题,给出了DHJ过程对应的PDE问题及特征值与收敛速度的关系。
-
Oseledec\'s Multiplicative Ergodic Theorem does not only solve the existence of Lyapunov exponents, but also show much more information of the dynamical structure.
Oseledec的乘法遍历定理解决了Lyapunov指数的存在性问题,并对动力系统的动力学结构给出了更多的信息,它现在已成为动力系统理论的最基本定理之一。
-
According to the Logistic Equation and the impact of stochastic factors, a stochastic nonlinear dynamical model had been presenred. The max Lyapunov exponent was calculated by Oseledec multiplicative ergodic theory, the local stability conditions had been obtained; the global stability conditions had also been obtained by judging the modality of the singular boundary; the stochastic Hopf bifurcation was analyzed using the invariant measure of stable probability density, and the condition of stochastic Hopf bifurcation had been discussed. The key parameter impacting the urban domestic water consumption had been found by numerical emulation.
根据Logistic阻滞增长模型原理,考虑到诸多随机因素的影响,本文建立了一个城市生活用水量的随机非线性模型,运用Oseledec乘性遍历定理计算了模型的最大Lyapunov指数,得到了局部稳定性的条件;通过对扩散边界性态的分析,得到了全局稳定性的条件;通过分析系统平稳状态概率密度的不变测度,得到了模型随机Hopf分岔的条件,结合实际进行了数值仿真,得到了影响用水量的关键参数。
-
Meanwhile, we proved the unboundedness of solutions of Lienard equations with weaker damping terms when the rotation number is irrational. We still obtained the unboundedness of solutions of Lienard equations with asymmetric nonlinearities at resonance.
另外,还通过应用Birkhoff遍历定理证明了当旋转数为无理数时,弱阻尼的Lienard方程无界解的存在性;同时,证明了共振条件下具有不对称非线性项的Lienard方程无界解的存在性。
-
We also provide the ergodic convergence theorems for semitopological nonexpansive type mappings in the reflexive Banach in Chapter 3. By this theorem we can get the main results in [13]14[15][16], and we should notice that their methods do not extend beyond Lipschitzian mappings.
本文第三章在自反的Banach空间中给出了一般拓扑半群上渐近非扩张型半群的遍历收敛定理与其殆轨道情形的等价性,从而利用本章中的定理可以直接推得文[13][14][15][16]中的主要结果。
- 更多网络解释与遍历性定理相关的网络解释 [注:此内容来源于网络,仅供参考]
-
ergodic state:遍历态
ergodic property 遍历性 | ergodic state 遍历态 | ergodic theorem 遍历定理
-
ergodic theory:各态历经性
遍历定理:Ergodic theorem | 各态历经性:Ergodic theory | 乘积遍历理论:multiplicative ergodic theorem
-
Ergodentheorie ergodic theory:遍历理论
Ergodensatz ergodic theorem 遍历定理 | Ergodentheorie ergodic theory 遍历理论 | Erreichbarkeit reachability 可达到性
-
uniquely ergodic:唯一遍历性
拓扑遍历:topologically ergodic maps | 唯一遍历性:uniquely ergodic | 遍历定理:Ergodic theorem
-
Ergodic:遍历性;各态历经的
ergodic theorem 遍历定理 | ergodic 遍历性;各态历经的 | ergodicity 各态历经性