- 更多网络例句与近似导数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Two new functions based on the property of bubble wavelet are proposed. An approximate 2nd derivative of an analytical signal can be obtained by applying n times of the wavelet transform to the signal, the signal-to-noise ratio can be enhanced greatly.
根据小波的定义和墨西哥帽小波的一些特点提出了两种简单的窗口函数,利用它们对模拟高斯信号求2n阶近似导数的同时滤除了噪声,同时还可分离重叠峰,并讨论了尺度因子对变换结果的影响。
-
Combining the definition of CWT and the derivative property of convolution, we constructed a general method to calculate the approximate derivative of signal through CWT by using the first and second derivative of Gaussian function, Haar, and the first derivative of three-order-Spline function as wavelets. As compared with the other approaches of calculating derivative, which include the numerical differentiation, polynomial filters, Fourier transform, and the recently proposed DWT method, fast calculation and simple mathematical operation were remarkable advantages of CWT method. For the signal corrupted by severe noise (Signal-toNoise Ratio=5), the satisfactory results could also obtained via CWT method through appropriately adiusting the dilations.
在此基础上,(1)结合连续小波变换的特点和卷积的微分性质,提出了使用Gaussian函数的一阶和二阶导数,Haar和三次样条函数的一阶导数作为小波函数的连续小波变换计算信号近似导数的一般性方法,与其他导数计算方法(包括数字微分法,多项式滤波法,Fourier变换法和离散小波变换法)相比,本法简单便捷,计算速度快,对于噪声含量较高的信号(S/N为5),只要适当调节尺度即可获得比较满意的结果。
-
They concluded that the derivative-free formula is not exact under the assumed conditions, but it is a very good approximate reconstruction formula.
黄朝志等发现在1993年发表的非圆轨迹不含导数的扇束重建公式推导中的一个错误他们的结论是:在假设的条件下,不含导数的重建公式不是精确的,但是一个很好的近似重建公式。
-
Firstly, The sufficient con-ditions of the existence and uniquity of the positive equlibria by applying functional derivative isobtained; Secondly, the global attractability of the positive equlibria is investigated by charateristicroots theory and oscillation theory; Thirdly, regarding the delay as a parameter, conditions of theexistence of Hopf bifurcation and the peridic solution, furthermore, the form of the approximateperidic solution are obtained; Finally, Some specific examples are given and the solution diagrameappears by Matlab.
首先利用导数性质,得到了该模型正平衡态存在惟一性的充分条件;其次,利用特征值和振动性理论得到了该模型正平衡态全局渐近稳定性充分条件;然后,应用Hopf分支理论证明了该模型Hopf分支及近似分支周期解的存在性,并给出了周期解的近似表达式;最后,借助于MATLAB数学软件,举例并绘出了模型数值解的拟合图象,验证了文中定理条件的可行性。
-
Numerical differentiation is that derivative value of a function at a certain point is approximately solved in discrete method.
中文摘要:数值微分就是用离散方法近似地求出函数在某点的导数值,关于数值微分已有许多求解方法,但这些方法都有各自的局限性,并且关于高阶导数近似逼近的方法研究相对较少。
-
We construct an explicit finite difference approximation for the equation by using the equivalence relation between Riemann-Liouville fractional derivative and Grünwald-Letnikovmake fractional derivative.
再利用Riemann-Liouville分数阶导数与Grtinwald-Letnikov分数阶导数之间的等价关系,构造一显式有限差分近似,这一离散格式可以解释为一个随机游走模型,并且收敛于稳定的概率分布。
-
The Taylor formula holds the very important status in the differential calculus, especially in solves in some concrete problems to have the extremely important application, for instance the proof inequality, the judgment improper integral collects the divergence, asks the function the limit, asks the function the higher order derivative, determines certain complex progressions to collect the divergence, solves certain differential equation, as well as approximate calculation in and so on application, therefore this article will do the thorough research to these seven aspects.
摘 要:泰勒公式在微分学中占有非常重要地地位,尤其在处理1些具体的茄题中有10分重要的应用,比如证明不等式,判断广义积分的敛散性,求函数的极限,求函数的高阶导数,判定某些复杂级数的敛散性,求解某些微分方程,以及近似计算等中的应用,因此本文将对这七个方面做深入的研究。关键词:泰勒公式;不等式;广义积分;极限;高阶导数;复杂级数;微分方程
-
In traditional finite difference schemes polynomial interpolation and divided differences have been taken to approximate the derivatives.
传统的差分格式用多项式插值和差商近似导数。
-
Then the generalized moving least squares approximation is derived under adding the residual of high orders derivative.
从而,进一步导出了不仅要求近似函数还要求其任意阶导数在各节点处的误差的平方和最小的广义移动最小二乘近似。
-
The moving least squares approximation makes only require least squares approximation with regard to functional value on all nodes. It makes no require for the residual of derivative approximation.
移动最小二乘近似只要求近似函数在各节点处的误差的平方和最小,对近似函数导数的误差没有任何约束。
- 更多网络解释与近似导数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
approximate derivative:近似导数
approximate continuity 近似连续性 | approximate derivative 近似导数 | approximate differentiability 近似可微性
-
approximate derivative:近似导数;近似微商
近似收敛 approximate convergence | 近似导数;近似微商 approximate derivative | 近似误差 approximate error
-
approximate partial derivative:近似偏导函数
approximate number 近似数 | approximate partial derivative 近似偏导函数 | approximate partial derived function 近似偏导函数
-
approximate differentiability:近似可微性
approximate derivative 近似导数 | approximate differentiability 近似可微性 | approximate differential 近似微分
-
approximate limit:近似极限
朋朋1给定的函数的对数的导数.[补注]设f:(a,b1~R是正函数,则它的对数导数等于(Inf)导数概念的一种推广,其中普通极限用近似极限(approximate limit)代替.设f(x)为单实变量x的函数,若极限f(x、一f(xn、111]1 aD
-
tangential approximation method:切线近似法
正切向量 tangent vector | 切线近似法 tangential approximation method | 切线导数 tangential derivative
-
linear form:线性形式
"...微积分学的基本思想乃是以线性函数来作函数的'局部,近似.碰巧我们有这样一个事实:对于卜维向量空间来说,在线性形式(linear form)与数(numbers)之I'ul,存在一种一一对应关系,所以在某一点的导数就被定义为一个数而不是一个线性形式.因此,
-
zero point energy:零点能
一般可以用迪卡尔坐标,也可以用Z-矩阵(Z-Matrix)二阶Moller-Plesset方法(MP2)和CASSCF方法(CASSCF)都可以提供解析二阶导数.对于4.6 零点能(Zero Point Energy)和内能(Thermal Energy)有效核电势方法(ECP)进行了近似,